24、(1)用配方法把二次函數(shù)y=x2-4x+3化為頂點式,并在直角坐標系中畫出它的大致圖象(要求所畫圖象的頂點、與坐標軸的交點位置正確).
(2)若A(x1,y1),B(x2,y2)是函數(shù)y=x2-4x+3圖象上的兩點,且x1<x2<1,請比較y1,y2的大小關系.(直接寫結果)
(3)把方程x2-4x+3=2的根在函數(shù)y=x2-4x+3的圖象上表示出來.
分析:用配方法直接得出二次函數(shù)y=x2-4x+3的頂點式y(tǒng)=(x-2)2-1,對稱軸x=2,頂點(2,-1),令y=0求得與x軸交點畫圖象即可;
解答:解:(1)加上一次項系數(shù)一半的平方得,y=x2-4x+4-4+3,
配方得,y=(x-2)2-1(2分),
對稱軸x=2,頂點(2,-1),
方程(x-2)2-1=0的解為x=3或1,
與x軸交點(1,0)、(3,0)與y軸交點(0,3);

(2)如圖,y1>y2(2分);

(3)∵方程x2-4x+3=2的根是y=2時,x的值,
∴畫出直線y=2,與拋物線交點的橫坐標即為方程的根.如圖(2分)
點評:本題是一道二次函數(shù)的綜合題,考查了拋物線畫法、頂點,對稱軸的求法,以及二次函數(shù)的三種形式,是一道中檔題,難度不大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

用配方法把二次函數(shù)y=2x2+2x-5化成y=a(x-h)2+k的形式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)用配方法把二次函數(shù)y=x2-4x+3變成y=(x-h)2+k的形成.
(2)在直角坐標系中畫出y=x2-4x+3的圖象.
(3)若A(x1,y1),B(x2,y2)是函數(shù)y=x2-4x+3圖象上的兩點,且x1<x2<1,請比較y1,y2的大小關系.(直接寫結果)
(4)把方程x2-4x+3=2的根在函數(shù)y=x2-4x+3的圖象上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、用配方法把二次函數(shù)y=-2x2+8x-5化成y=a(x+m)2+n的形式,即y=
-2(x-2)2+3
,它的對稱軸是
x=2
,頂點坐標是
(2,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用配方法把二次函數(shù)y=
1
2
x2+2x-5
化成y=a(x-h)2+k的形式為
y=
1
2
(x+2)2-7
y=
1
2
(x+2)2-7

查看答案和解析>>

同步練習冊答案