(2009•包頭)27的立方根是( )
A.3
B.-3
C.9
D.-9
【答案】分析:如果一個數(shù)x的立方等于a,那么x是a的立方根,根據(jù)此定義求解即可.
解答:解:∵3的立方等于27,
∴27的立方根等于3.
故選A.
點評:此題主要考查了求一個數(shù)的立方根,解題時先找出所要求的這個數(shù)是哪一個數(shù)的立方.由開立方和立方是互逆運算,用立方的方法求這個數(shù)的立方根.注意一個數(shù)的立方根與原數(shù)的性質(zhì)符號相同.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年山東省中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2009•包頭)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,-2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出m的值及四邊形ABEF的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2009•包頭)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,-2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出m的值及四邊形ABEF的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省楚雄州雙柏縣中考數(shù)學模擬試卷(郎紹波)(解析版) 題型:解答題

(2009•包頭)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,-2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出m的值及四邊形ABEF的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省肇慶市高要市中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•包頭)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,-2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出m的值及四邊形ABEF的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年內(nèi)蒙古包頭市中考數(shù)學試卷(解析版) 題型:解答題

(2009•包頭)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,-2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出m的值及四邊形ABEF的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案