【題目】2014年5月30日,云南盈江發(fā)生6.1級地震.接到災(zāi)情報告后,某武警部隊迅速組織了兩個救援中隊趕赴災(zāi)區(qū)救援.第一中隊有x人,第二中隊的人數(shù)比第一中隊的少30人.
(1)兩個中隊共有多少人?
(2)由于第一中隊任務(wù)較重,指揮部決定臨時從第二中隊調(diào)出10人到第一中隊,則調(diào)動后第一中隊的人數(shù)比第二中隊多多少人?
【答案】(1)兩個中隊共有人;
(2)調(diào)動后第一中隊的人數(shù)比第二中隊多人.
【解析】試題分析:(1)用x表示出第一中隊的人數(shù),再把兩式相加即可;
(2)先用x表示出第一二中隊的人數(shù),再把兩式相加即可.
試題解析:(1)∵第一中隊有x人,第二中隊比第一中隊人數(shù)的少30人,
∴第二中隊的人數(shù)是(x-30)人,
∴兩個中隊共有x+(x-30)=x+x-30=(x-30)(人).
答:兩個中隊共有x-30(人);
(2)∵從第二中隊調(diào)出10人到第一中隊,
∴調(diào)動后第一中隊的人數(shù)是(x+10)人,第二中隊的人數(shù)是(x-40)人,
∴(x+10)-(x-40)=x+10-x+40=(x+50)(人).
答:調(diào)動后第一中隊的人數(shù)比第二中隊多(x+50)人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長為10, 7, 5, 3的四根木條,選其中三根首尾順次相連接組成三角形,選法有( 。
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當△PAB為直角三角形時,AP的長為 __________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:如圖①,△ABC是等邊三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點作一個60°角:(1)角的兩邊分別交AB、AC邊于M、N兩點,連接MN.探究:線段BM、MN、NC之間的關(guān)系,并加以證明.
(2)若角的兩邊分別交AB、CA的延長線于M、N兩點,連接MN。在圖②中畫出圖形,再直接寫出線段BM、MN、NC之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關(guān)于⊙C的反稱點的定義如下:若在射線CP上存在一點P′,滿足CP+CP′=2r,則稱P′為點P關(guān)于⊙C的反稱點,如圖為點P及其關(guān)于⊙C的反稱點P′的示意圖.特別地,當點P′與圓心C重合時,規(guī)定CP′=0.
(1)當⊙O的半徑為1時.
①分別判斷點M(2,1),N(,0),T(1,)關(guān)于⊙O的反稱點是否存在?若存在,求其坐標;
②點P在直線y=﹣x+2上,若點P關(guān)于⊙O的反稱點P′存在,且點P′不在x軸上,求點P的橫坐標的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點A,B,若線段AB上存在點P,使得點P關(guān)于⊙C的反稱點P′在⊙C的內(nèi)部,求圓心C的橫坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知B、C、E三點在同一條直線上,△ABC與△DCE都是等邊三角形,其中線段BD交AC于點G,線段AE交CD于點F,求證:
(1)△ACE≌△BCD; (2)=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林從天臺柑桔場以2元/kg的成本價購進1000kg的柑桔,在銷售過程中有10%的柑桔會損壞不能出售,如果小林想要獲得520元的利潤,則出售柑桔時,每千克柑桔定價為( 。
A. 2.8元 B. 2.7元 C. 2.6元 D. 2.5元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com