【題目】2014年5月30日,云南盈江發(fā)生6.1級(jí)地震.接到災(zāi)情報(bào)告后,某武警部隊(duì)迅速組織了兩個(gè)救援中隊(duì)趕赴災(zāi)區(qū)救援.第一中隊(duì)有x人,第二中隊(duì)的人數(shù)比第一中隊(duì)的少30人.
(1)兩個(gè)中隊(duì)共有多少人?
(2)由于第一中隊(duì)任務(wù)較重,指揮部決定臨時(shí)從第二中隊(duì)調(diào)出10人到第一中隊(duì),則調(diào)動(dòng)后第一中隊(duì)的人數(shù)比第二中隊(duì)多多少人?
【答案】(1)兩個(gè)中隊(duì)共有人;
(2)調(diào)動(dòng)后第一中隊(duì)的人數(shù)比第二中隊(duì)多人.
【解析】試題分析:(1)用x表示出第一中隊(duì)的人數(shù),再把兩式相加即可;
(2)先用x表示出第一二中隊(duì)的人數(shù),再把兩式相加即可.
試題解析:(1)∵第一中隊(duì)有x人,第二中隊(duì)比第一中隊(duì)人數(shù)的少30人,
∴第二中隊(duì)的人數(shù)是(x-30)人,
∴兩個(gè)中隊(duì)共有x+(x-30)=x+x-30=(x-30)(人).
答:兩個(gè)中隊(duì)共有x-30(人);
(2)∵從第二中隊(duì)調(diào)出10人到第一中隊(duì),
∴調(diào)動(dòng)后第一中隊(duì)的人數(shù)是(x+10)人,第二中隊(duì)的人數(shù)是(x-40)人,
∴(x+10)-(x-40)=x+10-x+40=(x+50)(人).
答:調(diào)動(dòng)后第一中隊(duì)的人數(shù)比第二中隊(duì)多(x+50)人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)為10, 7, 5, 3的四根木條,選其中三根首尾順次相連接組成三角形,選法有( )
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△PAB為直角三角形時(shí),AP的長(zhǎng)為 __________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:如圖①,△ABC是等邊三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點(diǎn)作一個(gè)60°角:(1)角的兩邊分別交AB、AC邊于M、N兩點(diǎn),連接MN.探究:線段BM、MN、NC之間的關(guān)系,并加以證明.
(2)若角的兩邊分別交AB、CA的延長(zhǎng)線于M、N兩點(diǎn),連接MN。在圖②中畫出圖形,再直接寫出線段BM、MN、NC之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的反稱點(diǎn)的定義如下:若在射線CP上存在一點(diǎn)P′,滿足CP+CP′=2r,則稱P′為點(diǎn)P關(guān)于⊙C的反稱點(diǎn),如圖為點(diǎn)P及其關(guān)于⊙C的反稱點(diǎn)P′的示意圖.特別地,當(dāng)點(diǎn)P′與圓心C重合時(shí),規(guī)定CP′=0.
(1)當(dāng)⊙O的半徑為1時(shí).
①分別判斷點(diǎn)M(2,1),N(,0),T(1,)關(guān)于⊙O的反稱點(diǎn)是否存在?若存在,求其坐標(biāo);
②點(diǎn)P在直線y=﹣x+2上,若點(diǎn)P關(guān)于⊙O的反稱點(diǎn)P′存在,且點(diǎn)P′不在x軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點(diǎn)A,B,若線段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙C的反稱點(diǎn)P′在⊙C的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知B、C、E三點(diǎn)在同一條直線上,△ABC與△DCE都是等邊三角形,其中線段BD交AC于點(diǎn)G,線段AE交CD于點(diǎn)F,求證:
(1)△ACE≌△BCD; (2)=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林從天臺(tái)柑桔場(chǎng)以2元/kg的成本價(jià)購(gòu)進(jìn)1000kg的柑桔,在銷售過程中有10%的柑桔會(huì)損壞不能出售,如果小林想要獲得520元的利潤(rùn),則出售柑桔時(shí),每千克柑桔定價(jià)為( )
A. 2.8元 B. 2.7元 C. 2.6元 D. 2.5元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成三角形的是( 。
A. 1,2,3 B. 4,5,10 C. 8,15,20 D. 5,8,15
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com