分析 (1)利用待定系數(shù)法即可解決問題.
(2)存在.設(shè)新拋物線C2與的頂點(diǎn)坐標(biāo)為(m,2m),則N(m+2,2m+4),新拋物線C2的解析式為y=(x-m)2+2m,設(shè)點(diǎn)G的坐標(biāo)為(x,y).分三種情形討論①當(dāng)BM為平行四邊形MNBG的對(duì)角線時(shí),則有$\frac{2+m}{2}$=$\frac{x+m+2}{2}$,$\frac{2m+8}{2}$=$\frac{y+2m+4}{2}$,推出x=0,y=4,推出點(diǎn)G坐標(biāo)為(0,4),把(0,4)代入y=(x-m)2+2m,求出m即可.
②當(dāng)BN為對(duì)角線時(shí),方法類似.③當(dāng)MN為對(duì)角線時(shí),顯然不成立.
解答 解:(1)由題意C(2,4),設(shè)直線OC的解析式為y=kx,則有4=2k,
∴k=2,
∴直線OC的解析式為y=2x,
設(shè)以原點(diǎn)O為頂點(diǎn)的拋物線C1的解析式為y=ax2,把C(2,4)代入得a=1,
∴以原點(diǎn)O為頂點(diǎn)的拋物線C1的解析式為y=x2,
故答案為y=2x,y=x2.
(2)存在.理由如下,
設(shè)新拋物線C2與的頂點(diǎn)坐標(biāo)為(m,2m),則N(m+2,2m+4),新拋物線C2的解析式為y=(x-m)2+2m.
設(shè)點(diǎn)G的坐標(biāo)為(x,y).
①當(dāng)BM為平行四邊形MNBG的對(duì)角線時(shí),則有$\frac{2+m}{2}$=$\frac{x+m+2}{2}$,$\frac{2m+8}{2}$=$\frac{y+2m+4}{2}$,
∴x=0,y=4,
∴點(diǎn)G坐標(biāo)為(0,4),把(0,4)代入y=(x-m)2+2m,得到m=-1+$\sqrt{5}$或-1-$\sqrt{5}$,
此時(shí)拋物線C2的解析式為y=(x+1-$\sqrt{5}$)2-2+2$\sqrt{5}$或y=(x+1+$\sqrt{5}$)2-2-2$\sqrt{5}$.
②當(dāng)BN為對(duì)角線時(shí),則有$\frac{2+m+2}{2}$=$\frac{x+m}{2}$,$\frac{8+2m+4}{2}$=$\frac{2m+y}{2}$,
∴x=4,y=12,
∴點(diǎn)G的坐標(biāo)為(4,12),把(4,12)代入y=(x-m)2+2m,得到m=3-$\sqrt{5}$或3+$\sqrt{5}$
∴此時(shí)拋物線C2的解析式為y=(x-3+$\sqrt{5}$)2+6-2$\sqrt{5}$或y=(x-3-$\sqrt{5}$)2+6+2$\sqrt{5}$.
③當(dāng)MN為對(duì)角線時(shí),顯然不成立.
綜上所述,滿足條件的拋物線C2的解析式為y=(x+1-$\sqrt{5}$)2-2+2$\sqrt{5}$或y=(x+1+$\sqrt{5}$)2-2-2$\sqrt{5}$或y=(x-3+$\sqrt{5}$)2+6-2$\sqrt{5}$或y=(x-3-$\sqrt{5}$)2+6+2$\sqrt{5}$.
點(diǎn)評(píng) 本題主要考查了二次函數(shù)綜合題、一次函數(shù)的應(yīng)用、平行四邊形的性質(zhì)和判定、中點(diǎn)坐標(biāo)公式等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,屬于中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.1207×1011 | B. | 1.207×1010 | C. | 1.207×1011 | D. | 1207×108 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩直線平行,同位角相等 | B. | 若a⊥b,b⊥c,則a⊥c | ||
C. | 鄰補(bǔ)角是互補(bǔ)的角 | D. | 兩個(gè)銳角的和是銳角 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com