如圖,矩形PMON的邊OM,ON分別在坐標軸上,且點P的坐標為(-2,3).將矩形PMON繞點O順時針旋轉90°后得到矩形ABCD.
(1)請在圖中的直角坐標系中畫出旋轉后的圖形;
(2)若直線y=x+m恰好將矩形ABCD的面積二等分,求m的值.

【答案】分析:(1)根據(jù)網格結構找出點A、B、C、D的位置,然后順次連接即可;
(2)根據(jù)把矩形的面積二等分的直線必過矩形的中心,先求出矩形的中心坐標,然后代入直線解析式進行計算即可求出m的值.
解答:解:(1)如圖所示,矩形ABCD即為所求作的四邊形;

(2)點A的坐標是(3,2),
所以,矩形的中心坐標(,1),
∵直線y=x+m恰好將矩形ABCD的面積二等分,
∴直線過矩形的中心,
×+m=1,
解得m=
點評:本題考查了利用旋轉變換坐標,矩形的性質,明確過矩形的中心的直線將矩形的面積二等分是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,矩形PMON的邊OM,ON分別在坐標軸上,且點P的坐標為(-2,3).將矩精英家教網形PMON沿x軸正方向平移4個單位,得到矩形P′M′O′N′(P?P′,M?M′,O?O′,N?N′)
(1)請在圖中的直角坐標系中畫出平移后的圖象;
(2)求直線OP的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,矩形PMON的邊OM,ON分別在坐標軸上,且點P的坐標為(-2,3).將矩形PMON向右平移4個單位,得到矩形P′M′O′N′(P→P′,M→M′,O→O′,N→N′).
(1)請在右圖的直角坐標系中畫出平移后的矩形;
(2)求直線OP的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形PMON的邊OM,ON分別在坐標軸上,且點P的坐標為(-2,3).將矩形PMON繞點O順時針旋轉90°后得到矩形ABCD.
(1)請在圖中的直角坐標系中畫出旋轉后的圖形;
(2)若直線y=
13
x+m恰好將矩形ABCD的面積二等分,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,矩形PMON的邊OM,ON分別在坐標軸上,且點P的坐標為(-2,3).將矩形PMON沿x軸正方向平移4個單位,得到矩形P′M′O′N′(P?P′,M?M′,O?O′,N?N′)
(1)請在圖中的直角坐標系中畫出平移后的圖象;
(2)求直線OP的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2007•溫州)如圖,矩形PMON的邊OM,ON分別在坐標軸上,且點P的坐標為(-2,3).將矩形PMON沿x軸正方向平移4個單位,得到矩形P′M′O′N′(P?P′,M?M′,O?O′,N?N′)
(1)請在圖中的直角坐標系中畫出平移后的圖象;
(2)求直線OP的函數(shù)解析式.

查看答案和解析>>

同步練習冊答案