(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩形ABCD內(nèi)部.小明將BG延長(zhǎng)交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說(shuō)明理由.
(2)問(wèn)題解決
保持(1)中的條件不變,DC=2DF,求的值.

【答案】分析:(1)連接EF,則AE=EG,可證明Rt△EGF≌Rt△EDF,則GF=DF,∠GEF=∠DEF,∠GFE=∠DFE,∠AEB=∠GEB,從而得出△EDF∽△BAE∽△BEF;
(2)設(shè)DF=x,BC=y,則有GF=x,AD=y.根據(jù)DC=2DF得到CF=x,DC=AB=BG=2x,BF=BG+GF=3x,然后利用勾股定理得到y(tǒng)與x之間關(guān)系,從而求得兩條線段的比.
解答:解:(1)同意.連接EF,則∠EGF=∠D=90°,EG=AE=ED,EF=EF.
∴Rt△EGF≌Rt△EDF.
∴GF=DF;

(2)由(1)知,GF=DF.設(shè)DF=x,BC=y,則有GF=x,AD=y.
∵DC=2DF,
∴CF=x,DC=AB=BG=2x.∴BF=BG+GF=3x.
在Rt△BCF中,BC2+GF2=BF2,即y2+x2=(3x)2
∴y=2x
==;
點(diǎn)評(píng):本題考查了相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)以及翻折的性質(zhì),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河南)如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)D恰好落在AB邊上時(shí),填空:
①線段DE與AC的位置關(guān)系是
DE∥AC
DE∥AC
;
②設(shè)△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關(guān)系是
S1=S2
S1=S2


(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到如圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請(qǐng)你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點(diǎn)D是角平分線上一點(diǎn),BD=CD=4,DE∥AB交BC于點(diǎn)E(如圖4).若在射線BA上存在點(diǎn)F,使S△DCF=S△BDE,請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•曲阜市模擬)(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩形ABCD內(nèi)部.小明將BG延長(zhǎng)交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說(shuō)明理由.
(2)問(wèn)題解決
保持(1)中的條件不變,DC=2DF,求
ADAB
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩形ABCD內(nèi)部.延長(zhǎng)BG交DC于點(diǎn)F,證明GF=DF;根據(jù)上述證明過(guò)程中所添加的輔助線,找出兩兩相似的三個(gè)三角形(精英家教網(wǎng)全等除外),并給出證明過(guò)程;
(2)問(wèn)題解決
保持(1)中的條件不變,若DC=2DF,求
AD
AB
的值;
(3)類(lèi)比探究
保持(1)中的條件不變,若DC=nDF,猜想
AD
AB
的值,直接寫(xiě)出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)操作發(fā)現(xiàn)

如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩行ABCD內(nèi)部.小明將BG延長(zhǎng)交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說(shuō)明理由.

(2)問(wèn)題解決保持(1)中的條件不變,若DC=2DF,求的值;

(3)類(lèi)比探求保持(1)中條件不變,若DC=nDF,求的值

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩行ABCD內(nèi)部.小明將BG延長(zhǎng)交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說(shuō)明理由.

(2)問(wèn)題解決保持(1)中的條件不變,若DC=2DF,求的值;
(3)類(lèi)比探求保持(1)中條件不變,若DC=nDF,求的值

查看答案和解析>>

同步練習(xí)冊(cè)答案