【題目】若直線與函數(shù)的圖象有唯一公共點(diǎn),則的值為__ ;有四個(gè)公共點(diǎn)時(shí),的取值范圍是_
【答案】-3
【解析】
根據(jù)函數(shù)y=|x2-2x-3|與直線y=x+m的圖象之間的位置關(guān)系即可求出答案.
解:作出y=|x2-2x-3|的圖象,如圖所示,
∴y=,
當(dāng)直線y=x+m與函數(shù)y=|x2-2x-3|的圖象只有1個(gè)交點(diǎn)時(shí),
直線經(jīng)過(guò)點(diǎn)(3,0),將(3,0)代入直線y=x+m,
得m=-3,
聯(lián)立,
消去y后可得:x2-x+m-3=0,
令△=0,
可得:1-4(m-3)=0,
m=,
即m=時(shí),直線y=x+m與函數(shù)y=|x2-2x-3|的圖象只有3個(gè)交點(diǎn),
當(dāng)直線過(guò)點(diǎn)(-1,0)時(shí),
此時(shí)m=1,直線y=x+m與函數(shù)y=|x2-2x-3|的圖象只有3個(gè)交點(diǎn),
∴直線y=x+m與函數(shù)y=|x2-2x-3|的圖象有四個(gè)公共點(diǎn)時(shí),m的范圍為:,
故答案為:-3,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)如圖1,若點(diǎn)是直線上方拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸交直線于點(diǎn),作于點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn),點(diǎn)為軸上一動(dòng)點(diǎn),連接,.當(dāng)最長(zhǎng)時(shí),求的最小值;
(2)如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,將沿直線平移得到,直線與軸交于點(diǎn),連接,將 沿邊翻折得 ,連接, ,當(dāng)是等腰三角形時(shí),求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=2AB.將矩形ABCD對(duì)折,得到折痕MN,沿著CM折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)為E,ME與BC的交點(diǎn)為F;再沿著MP折疊,使得AM與EM重合,折痕為MP,此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)為G.下列結(jié)論:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若連接PE,則△PEG∽△CMD.其中正確的個(gè)數(shù)為( 。
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程:
(1)3(2x+1)2=108
(2)3x(x-1)=2-2x
(3)x2-6x+9=(5-2x)2
(4)x(2x-4)=5-8x
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),下列說(shuō)法正確的是( )
A.該函數(shù)的圖象的開(kāi)口向下B.該函數(shù)圖象的頂點(diǎn)坐標(biāo)是
C.當(dāng)時(shí),隨的增大而增大D.該函數(shù)的圖象與軸有兩個(gè)不同的交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長(zhǎng)為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】廊橋是我國(guó)古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點(diǎn)、處要安裝兩盞警示燈,則這兩盞燈的水平距離是____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉善縣將開(kāi)展以“珍愛(ài)生命,鐵拳護(hù)航”為主題的交通知識(shí)競(jìng)賽,某校對(duì)參加選拔賽的若干名同學(xué)的成績(jī)按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制成如下不完整的頻數(shù)統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖
成績(jī)等級(jí) | 頻數(shù)(人數(shù)) | 頻率 |
A | 4 | 0.08 |
B | m | 0.52 |
C | n | |
D | ||
合計(jì) | 1 |
(1)求m= ,n= ;
(2)在扇形統(tǒng)計(jì)圖中,求“C等級(jí)”所對(duì)應(yīng)圓心角的度數(shù);
(3)“A等級(jí)”的4名同學(xué)中有3名男生和1名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全縣比賽,請(qǐng)用樹(shù)狀圖法或列表法求出恰好選中“一男一女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,過(guò)點(diǎn)(0,1)和(﹣1,0),給出以下結(jié)論:①ab<0;②4a+c<1+b2;③0<c+b+a<2;④0<b<2;⑤當(dāng)x>﹣1時(shí),y>0;⑥8a+7b+2c﹣9<0其中正確結(jié)論的個(gè)數(shù)是( 。
A.6B.5C.4D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com