【題目】如圖,ABCABAC=13,BC=10,DAB的中點(diǎn)過點(diǎn)DDEAC于點(diǎn)E,DE的長是__________.

【答案】

【解析】

析:過ABC的垂線,由勾股定理易求得此垂線的長,即可求出△ABC的面積;連接CD,由于AD=BD,則△ADC、△BCD等底同高,它們的面積相等,由此可得到△ACD的面積;進(jìn)而可根據(jù)△ACD的面積求出DE的長.

解:過AAF⊥BCF,連接CD

△ABC中,AB=AC=13,AF⊥BC,則BF=FC=BC=5;

Rt△ABF中,AB=13,BF=5;

由勾股定理,得AF=12;

∴SABC=BC?AF=60

∵AD=BD,

∴SADC=SBCD=SABC=30;

∵SADC=AC?DE=30,即DE==

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1) (2)

(3)(x-1)(x+3)=12 (4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,AB=AC, A=40°,O為邊BC的中點(diǎn),把△ABCO順時(shí)針旋轉(zhuǎn)m0m180)度后,如果點(diǎn)B恰好落在初始△ABC的邊上,那么m=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=2AC, 點(diǎn)DBC上,且∠CAD=B,點(diǎn)EAB的中點(diǎn),聯(lián)結(jié)CEAD交于點(diǎn)G,點(diǎn)FBC上,且∠CEF=BAC.

(1)若∠BAC=90°,如圖1,求證: EG+ EF=AC;

(2)若∠BAC=120°,如圖2,請猜想線段EGEFAC之間的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段,點(diǎn)從點(diǎn)開始繞著點(diǎn)的速度順時(shí)針旋轉(zhuǎn)一周回到點(diǎn)后停止,點(diǎn)同時(shí)出發(fā)沿射線點(diǎn)向點(diǎn)運(yùn)動(dòng),若點(diǎn)、兩點(diǎn)能恰好相遇,則點(diǎn)運(yùn)動(dòng)的速度為________;

將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)按如圖方式疊放在一起(其中,,,).將三角尺固定,另一三角尺邊從邊開始繞點(diǎn)轉(zhuǎn)動(dòng),轉(zhuǎn)動(dòng)速度與問中點(diǎn)速度相同,當(dāng)且點(diǎn)在直線的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請寫出有可能的值及對應(yīng)轉(zhuǎn)動(dòng)的時(shí)間;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)當(dāng)__________時(shí),有意義;(2)當(dāng)__________時(shí),有意義;

3)當(dāng)__________時(shí),有意義;(4)當(dāng)__________時(shí),有意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠A的平分線交BCD,過點(diǎn)DDEAC,DFAB,垂足為點(diǎn)E、F,下面四個(gè)結(jié)論中:①∠AEF=∠AFE;②AD垂直平分EF;③SBFDSCEDBFCE;④EFBC,正確的是( 。

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰在平面直角坐標(biāo)系中的位置如圖,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為

1)若將沿軸向左平移個(gè)單位,此時(shí)點(diǎn)恰好落在反比例函數(shù)的圖像上,求的值;

2)若將繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)恰好落在反比例函數(shù)的圖像上,求的值;

3)若將繞點(diǎn)順時(shí)針旋轉(zhuǎn)位置,當(dāng)點(diǎn)、恰好同時(shí)落在(2)中所確定的反比例函數(shù)的圖像上時(shí),請直接寫出經(jīng)過點(diǎn)、且以軸為對稱的拋物線解析式.

查看答案和解析>>

同步練習(xí)冊答案