【題目】要建一個如圖所示的面積為300m2的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m).

(1)求圍欄的長和寬;

(2)能否圍成面積為400m2的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由.

【答案】(1)圍欄長為20米,寬為15米;(2)不能,理由見詳解.

【解析】

1)設(shè)圍欄的寬為x米,則圍欄的長為(50-2x)米,根據(jù)題意列出關(guān)于x的一元二次方程,解方程求出x的值,然后由墻的長度得到x的取值范圍,由此即可得出結(jié)論;

2)假設(shè)能圍成,列出關(guān)于x的一元二次方程,由根的判別式△<0,可得出該方程沒有實數(shù)根,從而得出假設(shè)不成立,由此即可得出結(jié)論.

:1)設(shè)與墻相垂直的一邊長為x米,則圍欄的長為(50-2x)米,

x(50-2x)=300

解得:x=10 x=15,

∵當(dāng)x=10時,

,故舍去;

∴圍欄的寬為15米,長為:米;

2)根據(jù)題意,假設(shè)能圍成,則

x(50-2x)=400,

,

∴原方程無解.

故不能圍成面積為400m2的長方形圍欄.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:如圖1,在等邊△ABC中,AB=12,⊙C半徑為6P為圓上一動點,連結(jié)AP,BP,求AP+BP的最小值.

1)嘗試解決:為了解決這個問題,下面給出一種解題思路:如圖2,連接CP,在CB上取點D,使CD=3,則有==,又∵∠PCD=BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.請你完成余下的思考,并直接寫出答案:AP+BP的最小值為.

2)自主探索:如圖1,矩形ABCD中,BC=7,AB=9,P為矩形內(nèi)部一點,且PB=3,AP+PC的最小值為.

3)拓展延伸:如圖2,扇形COD中,O為圓心,∠COD=120°,OC=4OA=2,OB=3,點P上一點,求2PA+PB的最小值,畫出示意圖并寫出求解過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在4×4的方格紙中,ABC的三個頂點都在格點上.

1)在圖1中,畫出一個與ABC成中心對稱的格點三角形;

2)在圖2中,畫出一個與ABC成軸對稱且與ABC有公共邊的格點三角形;

3)在圖3中,畫出ABC繞著點C按順時針方向旋轉(zhuǎn)90°后的三角形;

4)在圖4中,畫出所有格點BCD,使BCD為等腰直角三角形,且SBCD=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)的圖象為C1.二次函數(shù)的圖象與C1關(guān)于y軸對稱.

1求二次函數(shù)的解析式;

2當(dāng)0時,直接寫出的取值范圍;

3設(shè)二次函數(shù)圖象的頂點為點A,與y軸的交點為點B,一次函數(shù)k,m為常數(shù),k0的圖象經(jīng)過A,B兩點,當(dāng)時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,O到頂點A的距離為5,點B在⊙O上,點P是線段AB的中點,若B在⊙O上運動一周.

1)點P的運動路徑是一個圓;

2ABC始終是一個等邊三角形,直接寫出PC長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小明遇到下面一個問題:

如圖1所示,的角平分線,,求的值.

小明發(fā)現(xiàn),分別過,作直線的垂線,垂足分別為.通過推理計算,可以解決問題(如圖2.請回答,________.

參考小明思考問題的方法,解決問題:

如圖3,四邊形中,平分,.相交于點.

1=______.

2=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,,是射線上的一個動點(與點不重合),是線段上的一個動點(與點不重合),連接,過點的垂線,交射線于點連接.設(shè)

(1)當(dāng)時,求關(guān)于的函數(shù)關(guān)系式,并寫出它的定義域;

(2)(1)的條件下,取線段的中點,連接,,的長;

(3)如果動點在運動時,始終滿足條件那么請?zhí)骄浚?/span>的周長是否隨著動點的運動而發(fā)生變化?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,AB2,BCm,點E是邊BC上一點,BE1,連接AE

1)沿AE翻折ABE使點B落在點F處,

①連接CF,若CFAE,求m的值;

②連接DF,若DF,求m的取值范圍.

2ABE繞點A順時針旋轉(zhuǎn)得AB1E1,點E1落在邊AD上時旋轉(zhuǎn)停止.若點B1落在矩形對角線AC上,且點B1AD的距離小于時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P12),⊙P經(jīng)過原點O,交y軸正半軸于點A,點B在⊙P上,∠BAO45°,則點B的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊答案