【題目】如圖,△ABC中,∠ACB=90°,tanA=,AB=13,將△ABC繞點(diǎn)C順時針旋轉(zhuǎn)90°得到△A'B'C,P為線段A′B′上的動點(diǎn),以點(diǎn)P為圓心,PA′長為半徑作⊙P,當(dāng)⊙P與△ABC的邊相切時,⊙P的半徑為_____.
【答案】
【解析】
先根據(jù)直角三角形的性質(zhì)和勾股定理,結(jié)合sinA=513,AC=12求出AB與BC的長,再對⊙P與△ABC相切的位置進(jìn)行討論;
①如圖1中,當(dāng)⊙P與直線AC相切于點(diǎn)Q時,連接PQ,根據(jù)題意可得PQ∥CA′,從而得到PQCA'=PB'A'B',代入已知條件求出PQ,即為圓的半徑;
②如圖2中,當(dāng)⊙P與AB相切于點(diǎn)T時,易證A′、B′、T共線,從而得到△A′BT∽△ABC.利用相似三角形對應(yīng)邊成比例得到A'TAC=A'BAB,求出A′T確定圓的直徑,進(jìn)而求出半徑.
∵在△ABC中,∠ACB=90°,sinA=513,AC=12,
∴BC=5,AB=13.
①當(dāng)⊙P與直線AC相切于點(diǎn)Q時,連接PQ,如圖1所示:
設(shè)PQ=PA′=r.
∵PQ∥CA′,
∴PQ:CA'=PB':A'B',
∴r:12=(13r):13,
∴r= .
②當(dāng)⊙P與AB相切于點(diǎn)T時,如圖2所示,易證A′、B′、T共線.
∵△A′BT∽△ABC,
∴A'T:AC=A'B:AB,
∴A'T:12=17:13,
∴A′T= ,
∴r=A′T=.
綜上所述,⊙P的半徑為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個動點(diǎn)(含端點(diǎn)B,不含端點(diǎn)C),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D移動的過程中,BE的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O 的直徑 AB 長為 10,弦 MN⊥AB,將⊙O 沿 MN 翻折,翻折后點(diǎn) B 的對應(yīng)點(diǎn)為點(diǎn) B′,若 AB′=2,MB′的長為( )
A. 2 B. 2或 2 C. 2 D. 2 或 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,的三個頂點(diǎn)在坐標(biāo)軸上,,且,將沿著翻折到.
(1)求點(diǎn)的坐標(biāo);
(2)動點(diǎn)從點(diǎn)出發(fā),沿軸以個單位秒的速度向終點(diǎn)運(yùn)動,過點(diǎn)作直線垂直于軸,分別交直線、直線于點(diǎn)、,設(shè)線段的長為,點(diǎn)運(yùn)動時間為秒,求與的關(guān)系式,并寫出的取值范圍.
(3如圖2在(2)的條件下,點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn),點(diǎn)在直線上,是否存在點(diǎn),使得以、、、為頂點(diǎn)的四邊形為平行四邊形;若存在,求出值和點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地質(zhì)公園中有兩座相鄰小山.游客需從左側(cè)小山山腳E處乘坐豎直觀光電梯上行100米到達(dá)山頂C處,然后既可以沿水平觀光橋步行到景點(diǎn)P處,也可以通過滑行索道到達(dá)景點(diǎn)Q處,在山頂C處觀測坡底A的俯角為75°,觀測Q處的俯角為30°,已知右側(cè)小山的坡角為30°(圖中的點(diǎn)C,E,A,B,P,Q均在同一平面內(nèi),點(diǎn)A,Q,P在同一直線上)
(1)求∠CAP的度數(shù)及CP的長度;
(2)求P,Q兩點(diǎn)之間的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是⊙O上一點(diǎn),直線AE經(jīng)過點(diǎn)D,直線AB經(jīng)過圓心O,交⊙O于B,C兩點(diǎn),CE⊥AE,垂足為點(diǎn)E,交⊙O于點(diǎn)F,∠BCD=∠DCF
(1)求∠A+∠BOD的度數(shù);
(2)若sin∠DCE=,⊙O的半徑為5,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接:“國家衛(wèi)生城市”復(fù)檢,某市環(huán)衛(wèi)局準(zhǔn)備購買A,B兩種型號的垃圾箱,通過市場調(diào)研得知:購買3個A型垃圾箱和2個B型垃圾箱共需540元,購買2個A型垃圾箱比購買3個B型垃圾箱少用160元.
(1)求每個A型垃圾箱和B型垃圾箱各多少元?
(2)該市現(xiàn)需要購買A,B兩種型號的垃圾箱共30個,其中買A型垃圾箱不超過16個.
①求購買垃圾箱的總花費(fèi)w(元)與A型垃圾箱x(個)之間的函數(shù)關(guān)系式;
②當(dāng)買A型垃圾箱多少個時總費(fèi)用最少,最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次男子馬拉松長跑比賽中,隨機(jī)抽得12名選手所用的時間(單位:分鐘)得到如下樣本數(shù)據(jù):140 146 143 175 125 164 134 155 152 168 162 148
(1)計算該樣本數(shù)據(jù)的中位數(shù)和平均數(shù);
(2)如果一名選手的成績是147分鐘,請你依據(jù)樣本數(shù)據(jù)的中位數(shù),推斷他的成績?nèi)绾危?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點(diǎn)分別在軸的正半軸上,點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,,動點(diǎn)在軸的上方,且滿足.
(1)若點(diǎn)在這個反比例函數(shù)的圖像上,求點(diǎn)的坐標(biāo);
(2)連接,求的最小值;
(3)若點(diǎn)是平面內(nèi)一點(diǎn),使得以為頂點(diǎn)的四邊形是菱形,則請你直接寫出滿足條件的所有點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com