【題目】一個小球從點A(3,3)出發(fā),經(jīng)過y軸上點C反彈后經(jīng)過點B(1,0),則小球從A點經(jīng)過點C到B點經(jīng)過的最短路線長是(
A.4
B.5
C.6
D.7

【答案】B
【解析】解:如果將y軸當(dāng)成平面鏡,設(shè)A點關(guān)于y軸的對稱點為A′,則由小球路線知識可知,A′相當(dāng)于A的像點,光線從A到C到B,相當(dāng)于小球路線從A′直接到B,所以C點就是A′B與y軸的交點. ∵A點關(guān)于y軸的對稱點為A′,A(3,3),
∴A′(﹣3,3),
進而由兩點式寫出A′B的直線方程為:y=﹣ (x﹣1).
令x=0,求得y= .所以C點坐標(biāo)為(0, ).
那么根據(jù)勾股定理,可得:
AC= ,BC=
因此,AC+BC=5.
故選B.

如果設(shè)A點關(guān)于y軸的對稱點為A′,那么C點就是A′B與y軸的交點.易知A′(﹣3,3),又B(1,0),可用待定系數(shù)法求出直線A′B的方程.再求出C點坐標(biāo),根據(jù)勾股定理分別求出AC、BC的長度.那么小球路線從A點到B點經(jīng)過的路線長是AC+BC,從而得出結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點O在線段AB上,點C,D分別是AO,BO的中點

(1)AO=CO;BO=DO;
(2)若CO=3cm,DO=2cm,求線段AB的長度;
(3)若線段AB=10,小明很輕松地求得CD=5.他在反思過程中突發(fā)奇想:若點O在線段AB的延長線上,原有的結(jié)論“CD=5”是否仍然成立呢?請幫小明畫出圖形分析,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件畫圖,如圖示點A、B、C分別代表三個村莊:

①畫射線AC,畫線段AB
②若線段AB是連結(jié)A村和B村的一條公路,現(xiàn)C村莊也要修一條公路與A、B兩村莊之間的公路連通,為了減少修路開支,C村莊應(yīng)該如何修路?請在同一圖上用三角板畫出示意圖,并說明畫圖理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市初三學(xué)生的體育測試成績和課外體育鍛煉時間的情況,現(xiàn)從全市初三學(xué)生體育測試成績中隨機抽取120名學(xué)生的體育測試成績作為樣本.體育成績分為四個等次:優(yōu)秀、良好、及格、不及格.

1試求樣本扇形圖中體育成績良好所對扇形圓心角的度數(shù);

2統(tǒng)計樣本中體育成績優(yōu)秀良好學(xué)生課外體育鍛煉時間表如圖表所示,請將圖表填寫完整記學(xué)生課外體育鍛煉時間為小時

3全市初三學(xué)生中有14400人的體育測試成績?yōu)?/span>優(yōu)秀良好,請估計這些學(xué)生中課外體育鍛煉時間不少于4小時的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為3cm2,E為BC邊上一點,BAE=30°,F(xiàn)為AE的中點,過點F作直線分別與AB,DC相交于點M,N.若MN=AE,則AM的長等于 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解x3-2x2x正確的是(  )

A. (x-1)2 B. x(x-1)2 C. x(x2-2x+1) D. x(x+1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式成立的是( 。
A.(a2)3=a6
B.2a2-3a=-a
C.a6÷a3=a2
D.(a+4)(a-4)=a2-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果x2kx+64是一個整式的平方,那么常數(shù)k的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)男生的身高情況,隨機抽取若干名男生進行身高測量,將所得到的數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖),圖中從左到右依次為第1,2,3,4,5組.

(1)求抽取了多少名男生測量身高?
(2)身高在哪個范圍內(nèi)的男生人數(shù)最多?(答出是第幾小組即可)
(3)若該中學(xué)有300名男生,請估計身高為170cm及170cm以上的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案