如圖,在半徑為5的⊙O中,弦AB=6,點C是優(yōu)弧上一點(不與A、B重合),則cosC的值為( )
A.
B.
C.
D.
【答案】分析:首先作直徑AD,連接BD,由直徑所對的圓周角是直角,即可得∠ABD=90°,然后由勾股定理求得BD的長,繼而求得cosD,又由圓周角定理,可得∠C=∠D,則可求得答案.
解答:解:作直徑AD,連接BD,
∴∠ABD=90°,AD=2×5=10,
∴在Rt△ABD中,BD==8,
∴cosD===,
∵∠C=∠D,
∴cosC=
故選C.
點評:此題考查了圓周角定理、勾股定理以及三角函數(shù)的性質.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓中作一內接△ABC,使BC邊上的高AD=h(定值),這樣的三角形可作出無數(shù)個,但AB•AC為定值,其值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內作一個內接正方形,然后作這個正方形的內切圓,又在這個內切圓中作內接正方形,依此作到第n個內切圓,它的半徑是(  )
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為2的⊙O中,弦AB的長為2
3
,則∠AOB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•上海模擬)如圖,在半徑為1的扇形AOB中,∠AOB=90°,點P是
AB
上的一個動點(不與點A、B重合),PC⊥OA,PD⊥OB,垂足分別為點C、D,點E、F、G、H分別是線段OD、PD、PC、OC的中點,EF與DG相交于點M,HG與EC相交于點N,聯(lián)結MN.如果設OC=x,MN=y,那么y關于x的函數(shù)解析式及函數(shù)定義域為
y=-
1
3
x2+
4
9
(o<x<1)
y=-
1
3
x2+
4
9
(o<x<1)

查看答案和解析>>

同步練習冊答案