如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點都在格點上,在方格紙中建立平面直角坐標(biāo)系如圖所示.
(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1,并寫出△A1B1C1各頂點的坐標(biāo).
(2)把(1)中的△A1B1C1繞著點O順時針旋轉(zhuǎn)180°得到△A2B2C2,在圖中畫出△A2B2C2,并回答△A2B2C2與△ABC對應(yīng)頂點的坐標(biāo)有何關(guān)系.

【答案】分析:(1)由圖知:A(-2,0),B(-2,-2)C(-1,-3),則這三點關(guān)于關(guān)于x軸的對稱點的坐標(biāo)分別是A1(-2,0),B1(-2,2),C1(-1,3),依次連接這三點即為所求的△A1B1C1
(2)把△A1B1C1繞著點O順時針旋轉(zhuǎn)180°得到△A2B2C2,即△A1B1C1△A2B2C2關(guān)于原點O成中心對稱,所以A2(2,0)B2(2,-2)C2(1,-3)依次連接這三點即為所求的△A2B2C2.所以△A2B2C2△ABC對應(yīng)頂點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相同.
解答:解:(1)如圖,△A1B1C1就是所求畫的三角形
A1(-2,0),B1(-2,2),C1(-1,3);

(2)如圖,△A2B2C2就是所求畫的三角形,
△A2B2C2與△ABC對應(yīng)頂點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相同.
點評:本題考查在平面直角坐標(biāo)系中任意一點關(guān)于x軸,坐標(biāo)原點對稱點的坐標(biāo)特點:若P(a,b)則它于x軸,坐標(biāo)原點對稱點的坐標(biāo)分別是(a,-b),(-a,-b)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(2,-1).
(1)把△ABC先向上平移4個單位得△A1B1C1,再沿x軸翻折得△A2B2C2,請在網(wǎng)格中畫出△A2B2C2,并寫出C2的坐標(biāo).
(2)以原點為位似中心,在第二象限內(nèi)畫出△ABC的位似圖形△A3B3C3,且△A3B3C3與△ABC的相似比為2,并寫出C3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連續(xù)為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形,在建立平面直角坐標(biāo)系后,點B的坐標(biāo)為(-1,-1)把△ABC繞點C按順時針方向旋轉(zhuǎn)90°后得到△A1B1C,畫出△A1B1C的圖形,并寫出點B1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點B的坐標(biāo)為(-1,0)
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,寫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中的每個小正方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上,O、M都在格點上.
(1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1;
(2)畫出將△ABC繞點O按順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形碼?如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中的每個小方格都是邊長為1的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,A(-1,5),B(-1,0),C(-4,3).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;(其中A1、B1、C1是A、B、C的對應(yīng)點,不寫畫法)
(2)寫出A1、B1、C1的坐標(biāo);
(3)求出△A1B1C1的面積.

查看答案和解析>>

同步練習(xí)冊答案