【題目】某校九年級(jí)在區(qū)體育檢測(cè)前進(jìn)行最后一次摸底考試,從中隨機(jī)抽取了50名男生的1000米測(cè)試成績(jī),根據(jù)評(píng)分標(biāo)準(zhǔn)按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并繪制成下面的扇形圖和統(tǒng)計(jì)表:
請(qǐng)你根據(jù)以上圖表提供的信息,解答下列問(wèn)題:
(1)在統(tǒng)計(jì)表中x= ,y= ,m= ,n= ;
(2)在扇形圖中,A等級(jí)所對(duì)應(yīng)的圓心角是 度;
(3)在50名學(xué)生的1000米跑成績(jī)(得分)中,中位數(shù)是 ,眾數(shù)是 ;
(4)如果該校九年級(jí)男生共有200名,那么請(qǐng)你估計(jì)這200名男生中成績(jī)等級(jí)沒(méi)有達(dá)到A或B的共有 人?
【答案】(1)12,2,0.24,0.04;(2)136.8;(3)8分,9分;(4)44.
【解析】
(1)根據(jù)B組所占比例求得的比例和總?cè)藬?shù)求出該組的人數(shù),減去8即得到x的值,然后除以總?cè)藬?shù)求得該組的總?cè)藬?shù);
(2)該組的頻率即為該扇形圓心角所占圓周角的比例,所以用圓周角乘以該組的頻率即得到該組所表示的扇形的圓心角;
(3)排序后位于中間位置的數(shù)分別是8、8,所以中位數(shù)是8,9分出現(xiàn)了13次最多,所以眾數(shù)為9分;
(4)根據(jù)沒(méi)有達(dá)到此標(biāo)準(zhǔn)的學(xué)生所占的比例求出全校沒(méi)有達(dá)到此標(biāo)準(zhǔn)的學(xué)生數(shù).
(1)50×40%=20人,
∴20﹣8=12人,12÷50=0.24,
∴x=12,m=0.24,
∵50﹣6﹣13﹣12﹣8﹣6﹣3=2,
∴2÷50=0.04,
∴y=2,n=0.04;
(2)360°×(0.12+0.26)=136.8°;
(3) 排序后位于中間位置的數(shù)分別是8、8,所以中位數(shù)是8;9分出現(xiàn)了13次最多,所以眾數(shù)為9分;
(4)200×(0.12+0.04+0.06)=44.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠CAB=∠ABD=50°,P為AB中點(diǎn),點(diǎn)M為射線AC上(不與點(diǎn)A重合)的任意一點(diǎn),連接MP,并使MP的延長(zhǎng)線交射線BD于點(diǎn)N,設(shè)∠BPN=α.連接MB,NA.
(1)求證:四邊形MBNA為平行四邊形;
(2)當(dāng)α=____°時(shí),四邊形MBNA為矩形;
(3)當(dāng)α=_____°時(shí),四邊形MBNA為菱形;
(4)四邊形MBNA可能是正方形嗎?_____(回答“可能”或“不可能”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年5月份,十八中九年級(jí)學(xué)生參加了中考體育模擬考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖,根據(jù)圖表中的信息解答下列問(wèn)題:
分組 | 分?jǐn)?shù)段(分)) | 頻數(shù) |
A | 26≤x<31 | 2 |
B | 31≤x<36 | 5 |
C | 36≤x<41 | 15 |
D | 41≤x<46 | m |
E | 46≤x<51 | 10 |
(1)求全班學(xué)生人數(shù)和m的值.
(2)求扇形統(tǒng)計(jì)圖中的E對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)該班中考體育成績(jī)滿(mǎn)分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流,請(qǐng)用“列表法”或“畫(huà)樹(shù)狀圖法”求出恰好選到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家劉徽將勾股形(古人稱(chēng)直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式,后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的長(zhǎng)方形由兩個(gè)這樣的圖形拼成,若,,則該長(zhǎng)方形的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(x1,0),B(x2,0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=-3x+t上.
(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)y1隨著x的增大而增大時(shí),求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求2n2-5n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電腦公司準(zhǔn)備每周(按120個(gè)工時(shí)計(jì)算)組裝三種型號(hào)的電腦360臺(tái),組裝這些電腦每臺(tái)所需工時(shí)和每臺(tái)產(chǎn)值如下表.
電腦型號(hào) | ① | ② | ③ |
工時(shí)(個(gè)) | |||
產(chǎn)值(萬(wàn)元) | 0.4 | 0.3 | 0.2 |
(1)如果每周準(zhǔn)備組裝100臺(tái)型號(hào)③電腦,那么每周應(yīng)組裝型號(hào)①、②電腦各幾臺(tái)?
(2)如果一周產(chǎn)值定為10萬(wàn)元,那么這周應(yīng)組裝型號(hào)①、②、③電腦各幾臺(tái)?
(3)若一周型號(hào)③電腦至少組裝20臺(tái),一周產(chǎn)值記為w,試直接寫(xiě)出w的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)O是AB邊上一點(diǎn),以O為圓心OB為半徑的⊙O與邊AB相交于點(diǎn)E,與AC邊相切于D點(diǎn),連接OC交⊙O于點(diǎn)F.
(1)連接DE,求證:OC∥DE;
(2)若⊙O的半徑為3.
①連接DF,若四邊形OEDF為菱形,弧BD的長(zhǎng)為_____(結(jié)果保留π)
②若AE=2,則AD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱(chēng)軸為直線x=1.下列結(jié)論:①abc>0;②4a+2b+c>0;③<a<;④b>c.其中含所有正確結(jié)論的選項(xiàng)是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD是等腰三角形ABC底邊BC上的高,AD=1,DC=,將△ADC繞著點(diǎn)D旋轉(zhuǎn),得△DEF,點(diǎn)A、C分別與點(diǎn)E、F對(duì)應(yīng),當(dāng)EF與直線AB重合時(shí),設(shè)AC與DF相交于點(diǎn)O,那么由線段OC、OF和弧CF圍成的陰影部分的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com