如圖,AB∥DC,DE=2AE,CF=2BF,且DC=5,AB=8,則EF=      
7.

試題分析:如圖,延長AD、BC交于G.
∵AB∥EF∥DC,DC=5,AB=8,∴GD:GA=5:8.
∵DE=2AE,∴GD:GE=5:7.
∴DC:EF=5:7.
解得EF=7.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,D是BC邊上的點(不與點B、C重合),連結(jié)AD.
問題引入:
(1)如圖①,當點D是BC邊上的中點時,SABD:SABC=   ;當點D是BC邊上任意一點時,SABD:SABC=   (用圖中已有線段表示).
探索研究:
(2)如圖②,在△ABC中,O點是線段AD上一點(不與點A、D重合),連結(jié)BO、CO,試猜想SBOC與SABC之比應(yīng)該等于圖中哪兩條線段之比,并說明理由.
拓展應(yīng)用:
(3)如圖③,O是線段AD上一點(不與點A、D重合),連結(jié)BO并延長交AC于點F,連結(jié)CO并延長交AB于點E,試猜想的值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

好學(xué)的小宸利用電腦作了如下的探索:
(1)如圖①,將邊長為2的等邊三角形復(fù)制若干個后向右平移,使一條邊在同一直線上.則△A2C1B1的面積為   ;
(2)求△A4C3B3的面積;
(3)在保持圖①中各三角形的邊OB1=B1B2=B2B3=B3B4=2不變的前提下,小宸又作了如下探究:將頂點A1、A2、A3、A4向上平移至同一高度(如圖②),若OA4=OB4,試判斷以O(shè)A2、OA3和OA4為三邊能否構(gòu)成三角形?若能,請判斷這個三角形的形狀;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:△ABD和△CBD關(guān)于直線BD對稱(點A的對稱點是點C),點E、F分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點G.
(1)如圖l,求證:∠EAF=∠ABD;
(2)如圖2,當AB=AD時,M是線段AG上一點,連接BM、ED、MF,MF的延長線交ED于點N,∠MBF=∠BAF,AF=AD,請你判斷線段FM和FN之間的數(shù)量關(guān)系,并證明你的判斷是正確的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△ABC中,D、E、F分別為三邊的中點,G點在邊AB上,且DG平分△ABC的周長,設(shè)BC=a、AC=b、AB=c.
(1)求線段BG的長;
(2)求證:DG平分∠EDF;
(3)連接CG,如圖2,若△GBD ∽△GDF,求證:BG⊥CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩形OABC的頂點O(0,0)、A(4,0)、B(4,-3).動點P從O出發(fā),以每秒1個單位的速度,沿射線OB方向運動.設(shè)運動時間為t秒.
(1)求P點的坐標(用含t的代數(shù)式表示);
(2)如圖,以P為一頂點的正方形PQMN的邊長為2,且邊PQ⊥y軸.設(shè)正方形PQMN與矩形OABC的公共部分面積為S,當正方形PQMN與矩形OABC無公共部分時,運動停止.
①當t<4時,求S與t之間的函數(shù)關(guān)系式;
②當t>4時,設(shè)直線MQ、MN分別交矩形OABC的邊BC、AB于D、E,問:是否存在這樣的t,使得△PDE為直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知是△的角平分線,上的一點,且,,

(1)求證:△∽△;
(2)求證:△∽△
(3)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為4,E、F分別是BC、CD上的兩個動點,且AE⊥EF.則AF的最小值是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,若AC=2,則AD的長是(  )
A.B.
C.-1D.+1

查看答案和解析>>

同步練習(xí)冊答案