在拋物線上取三點A、B、C,設(shè)A、B的橫坐標(biāo)分別為a(a>0),a+1,直線BC與x軸平行

(1)把△ABC的面積S用a表示;

(2)當(dāng)△ABC的面積S為15時,求a的值;

(3)當(dāng)△ABC的面積S=15時,在BC上求一點D,使△ACD的面積為8.

答案:
解析:

(1)如圖,因的圖象關(guān)于y軸對稱,BCx軸,所以BC=2(a1),△ABC中,BC上的高=;=(a1)(2a1)

(2)當(dāng)S=15時,解方程(a1)(2a1)=15,得a=2,,由a0,所以a=2適合,不適合.

(3)當(dāng)S=15時,△ABCBC上的高為5,△ACD的面積為7,則△ABD的面積為8,,因為B(3,-15)所以D點坐標(biāo)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點.
(1)求拋物線的函數(shù)關(guān)系式;
(2)若過點C的直線y=kx+b與拋物線相交于點E (4,m),請求出△CBE的面積S的值;
(3)寫出二次函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)在拋物線上是否存在點P使得△ABP為等腰三角形?若存在,請指出一共有幾個滿足條件的點P,并求出其中一個點的坐標(biāo);若不存在這樣的點P,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+3ax+b交x軸分別于A、B(1,0),交y軸于C(0,2).
(1)求此拋物線的解析式;
(2)如圖(1),P為拋物線第三象限的點,若S△PAC=2S△PBC,求P點坐標(biāo);
(3)如圖(2),D為拋物線的頂點,在拋物線上是否存在點Q,使△ADQ為銳角三角形?若存在,求出Q點橫坐標(biāo)的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•資陽)如圖,已知直線y=2x+2交y軸于點A,交x軸于點B,直線l:y=-3x+9
(1)求經(jīng)過A、B、C三點的拋物線的函數(shù)關(guān)系式,并指出此函數(shù)的函數(shù)值隨x的增大而增大時,x的取值范圍;
(2)若點E在(1)中的拋物線上,且四邊形ABCE是以BC為底的梯形,求梯形ABCE的面積;
(3)在(1)、(2)的條件下,過E作直線EF⊥x軸,垂足為G,交直線l于F.在拋物線上是否存在點H,使直線l、FH和x軸所圍成的三角形的面積恰好是梯形ABCE面積的
12
?若存在,求點H的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知直線y=2x+2交y軸于點A,交x軸于點B,直線l:y=-3x+9
(1)求經(jīng)過A、B、C三點的拋物線的函數(shù)關(guān)系式,并指出此函數(shù)的函數(shù)值隨x的增大而增大時,x的取值范圍;
(2)若點E在(1)中的拋物線上,且四邊形ABCE是以BC為底的梯形,求梯形ABCE的面積;
(3)在(1)、(2)的條件下,過E作直線EF⊥x軸,垂足為G,交直線l于F.在拋物線上是否存在點H,使直線l、FH和x軸所圍成的三角形的面積恰好是梯形ABCE面積的?若存在,求點H的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案