【題目】麒麟?yún)^(qū)第七中學(xué)現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計(jì)劃在空地上種草皮,經(jīng)測(cè)量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m.
(1)求出空地ABCD的面積?
(2)若每種植1平方米草皮需要300元,問總共需投入多少元?

【答案】
(1)解:連接AC,

在Rt△ABC中,AC2=AB2+BC2=32+42=52,

∴AC=5.

在△DAC中,CD2=132,AD2=122

而122+52=132,

即AC2+AD2=CD2,

∴∠DCA=90°,

S四邊形ABCD=SBAC+SDAC= BCAB+ DCAC,

= ×4×3+ ×12×5=36(m2);

答:空地ABCD的面積為36m2


(2)解:36×300=10800(元),.

答:總共需要投入10800元


【解析】(1)連接AC,在直角三角形ABC中可求得AC的長(zhǎng),由AC、AD、DC的長(zhǎng)度關(guān)系可得三角形DAC為一直角三角形,DA為斜邊;由此看,四邊形ABCD由Rt△ABC和Rt△DAC構(gòu)成,則容易求出面積;(2)面積乘以單價(jià)即可得出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的兩條對(duì)角線相交于O,若AC=6,BD=4,則菱形ABCD的周長(zhǎng)是()

A.24
B.16
C.??
D.?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,直線L垂直分線段AC,垂足為O,直線L分別于線段AD,CB的延長(zhǎng)線交于點(diǎn)E,F(xiàn),證明四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB=4cm,BC=8cm.E、F分別是AB、BC的中點(diǎn).則E到DF的距離cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:矩形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,∠BOC=120°,AC=4cm,求矩形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列性質(zhì)中,菱形具有而矩形不一定具有的是(

A. 對(duì)角線互相平分 B. 對(duì)角線互相垂直 C. 對(duì)邊平行且相等 D. 對(duì)角線相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的兩邊長(zhǎng)分別為4厘米和9厘米,則這個(gè)三角形的周長(zhǎng)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.

(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說明理由;
(3)在運(yùn)動(dòng)過程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)角補(bǔ)角比它的余角的2倍多30°,這個(gè)角的度數(shù)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案