精英家教網某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞著矩形ABCD的對角線交點O旋轉(如圖所示).已知AB=8,BC=10,圖中M、N分別為直角三角板的直角邊與矩形ABCD的邊CD、BC的交點.問:是否存在某一旋轉位置,使得CM+CN等于
445
?若存在,請求出此時DM的長;若不存在,請說明理由.
分析:延長NO交AD于點P,連接MN、MP.根據(jù)旋轉的性質可得OM是PN的中垂線,在Rt△MDP和在Rt△MCN中,利用勾股定理,即可得到BN2+DM2=CN2+CM2,DM=x,CN=y,即可得到x,y的關系式,從而求解.
解答:精英家教網解:延長NO交AD于點P,連接MN、MP.
由“O為矩形ABCD的對角線交點”,通過全等或旋轉對稱可得BN=DP,OP=ON.(1分)
∴OM垂直平分PN.∴MP=MN.(2分)
在Rt△MDP中,MP2=DP2+DM2,
在Rt△MCN中,MN2=CN2+CM2,(3分)
又∵MP=MN,BN=DP,
∴BN2+DM2=CN2+CM2.(4分)
若設DM=x,CN=y,則CM=8-x,BN=10-y.
∴(10-y)2+x2=y2+(8-x)2.化簡得y=
4
5
x+
9
5
.(6分)
∴CM+CN=8-x+y=8-x+
4
5
x+
9
5
=
49
5
-
1
5
x.(7分)
由題意得
49
5
-
1
5
x=
44
5
,(8分)
解得x=5.
∴當DM=5時,CM+CN等于
44
5
.(9分)
點評:本題主要考查了旋轉的性質,以及圖形的旋轉的性質,根據(jù)勾股定理證得BN2+DM2=CN2+CM2是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(①?②?③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點.
(1)該學習小組成員意外的發(fā)現(xiàn)圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖①和圖③中發(fā)現(xiàn)的結論選擇其一說明理由.

(2)試探究圖②中BN、CN、CM、DN這四條線段之間的數(shù)量關系,寫出你的結論,并說明理由.
(3)將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之間所滿足的數(shù)量關系.(不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞著矩形ABCD(AB<BC)的對角線交點O旋轉(如圖①→②→③),圖中M、N分別為直角三角板的直角邊與矩形ABCD的邊CD、BC的交點.

(1)該學習小組中一名成員意外地發(fā)現(xiàn):在圖①(三角板的一直角邊與OD重合)中,BN2=CD2+CN2;在圖③(三角板的一直角邊與OC重合)中,CN2=BN2+CD2.請你對這名成員在圖①和圖③中發(fā)現(xiàn)的結論選擇其一說明理由.
(2)試探究圖②中BN、CN、CM、DM這四條線段之間的關系,寫出你的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞著矩形ABCD(DC<BC)的對角線交點O旋轉(如圖①→②),圖中M、N分別為直角三角板的直角邊與三角形DBC的邊CD、BC的交點.
(1)在圖①(三角板的一直角邊與OD重合)中,有CN2+DC2=BN2成立,請說明理由.
(2)試探究圖②中BN、CN、CM、DM這四條線段之間的數(shù)量關系,請你用一個等式在橫線上直接表示出探究的結論:
CN2+CM2=DM2+BN2
CN2+CM2=DM2+BN2
.證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東威海市八年級下期末模擬數(shù)學試卷(三)(帶解析) 題型:解答題

某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點。
⑴該學習小組成員意外的發(fā)現(xiàn)圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖①和圖③中發(fā)現(xiàn)的結論選擇其一說明理由。

⑵試探究圖②中BN、CN、CM、DN這四條線段之間的數(shù)量關系,寫出你的結論,并說明理由。

⑶將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數(shù)量關系(不需要證明)

查看答案和解析>>

同步練習冊答案