精英家教網 > 初中數學 > 題目詳情

我們定義:“四個頂點都在三角形邊上的正方形是三角形的內接正方形” .

已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.

(1)如圖,四邊形CDEF是△ABC的內接正方形,則正方形CDEF的邊長a1            

(2)如圖,四邊形DGHI是(1)中△EDA的內接正方形,則第2個正方形DGHI的邊長a2=              ;繼續(xù)在圖2中的△HGA中按上述方法作第3個內接正方形;…以此類推,則第n個內接正方形的邊長an=              .(n為正整數)

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

定義:在平面內,我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四個頂點中某一點為起點,另一個頂點為終點作向量,可以作出8個不同的向量:
AB
BA
、
AC
、
CA
AD
、
DA
、
BD
、
DB
(由于
AB
DC
是相等向量,因此只算一個).
(1)作兩個相鄰的正方形(如圖一).以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數記為f(2),試求f(2)的值;
精英家教網
(2)作n個相鄰的正方形(如圖二)“一字型”排開.以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數記為f(n),試求f(n)的值;
精英家教網
(3)作2×3個相鄰的正方形(如圖三)排開.以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數記為f(2×3),試求f(2×3)的值;
精英家教網
(4)作m×n個相鄰的正方形(如圖四)排開.以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數記為f(m×n),試求f(m×n)的值.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

定義:在平面內,我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四個頂點中某一點為起點,另一個頂點為終點作向量,可以作出8個不同的向量:
AB
、
BA
AC
、
CA
、
AD
DA
、
BD
、
DB
(由于
AB
DC
是相等向量,因此只算一個).
(1)作兩個相鄰的正方形(如圖1).以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數記為f(2),試直接寫出f(2)的值;
(2)作n個相鄰的正方形(如圖2)“一字型”排開.以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數記為f(n),試直接寫出f(n)的值.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

探究問題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點P,使它到三角形頂點的距離之和最小,則稱點P為△ABC的費馬點,此時PA+PB+PC的值為△ABC的費馬距離;
②如圖(B),若四邊形ABCD的四個頂點在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;
精英家教網
(2)知識遷移:
①請你利用托勒密定理,解決如下問題:
如圖(C),已知點P為等邊△ABC外接圓的
BC
上任意一點.求證:PB+PC=PA;
②根據(2)①的結論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費馬點和費馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在
BC
上任取一點P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+
 

第三步:請你根據(1)①中定義,在圖(D)中找出△ABC的費馬點P,并請指出線段
 
的長度即為△ABC的費馬距離.
精英家教網
(3)知識應用:
2010年4月,我國西南地區(qū)出現了罕見的持續(xù)干旱現象,許多村莊出現了人、畜飲水困難,為解決老百姓的飲水問題,解放軍某部來到云南某地打井取水.
已知三村莊A、B、C構成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現選取一點P打水井,使從水井P到三村莊A、B、C所鋪設的輸水管總長度最小,求輸水管總長度的最小值.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

某課題學習小組在一次活動中對三角形的內接正方形的有關問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內接正方形.
結論:在探討過程中,有三位同學得出如下結果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在
1
1
個、
2
2
個、
3
3
個大小不同的內接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內接正方形的面積較大.
任務:(1)填充甲同學結論中的數據;
(2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

我們定義:“四個頂點都在三角形邊上的正方形是三角形的內接正方形”.
已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如圖1,四邊形CDEF是△ABC的內接正方形,則正方形CDEF的邊長a1
2
2
;
(2)如圖2,四邊形DGHI是(1)中△EDA的內接正方形,則第2個正方形DGHI的邊長a2=
4
3
4
3
;繼續(xù)在圖2中的△HGA中按上述方法作第3個內接正方形;…以此類推,則第n個內接正方形的邊長an=
2n
3n-1
2n
3n-1
.(n為正整數)

查看答案和解析>>

同步練習冊答案