(2006•吉林)如圖,在把易拉罐中的水倒入一個(gè)圓水杯的過(guò)程中,若水杯中的水在點(diǎn)P與易拉罐剛好接觸,則此時(shí)水杯中的水深為( )
A.2cm
B.4cm
C.6cm
D.8cm
【答案】分析:易得易拉罐進(jìn)入水杯部分為等腰直角三角形,底邊長(zhǎng)為8,可得底邊上的高.讓10減去底邊上的高即為水深.
解答:解:∵易拉罐進(jìn)入水杯部分為等腰直角三角形,而斜邊與圓水杯底相等為8cm.
∴P點(diǎn)到杯口距離為4cm.
∴水深為10-4=6cm.
故選C.
點(diǎn)評(píng):本題考查解直角三角形在生活中應(yīng)用,背景新穎.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•吉林)如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0)(如圖1).
(1)當(dāng)α=60°時(shí),△CBD的形狀是______;
(2)當(dāng)AH=HC時(shí),求直線FC的解析式;
(3)當(dāng)α=90°時(shí),(如圖2).請(qǐng)?zhí)骄浚航?jīng)過(guò)點(diǎn)D,且以點(diǎn)B為頂點(diǎn)的拋物線,是否經(jīng)過(guò)矩形CFED的對(duì)稱(chēng)中心M,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•吉林)如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時(shí),大孔水面寬度AB=20米,頂點(diǎn)M距水面6米(即MO=6米),小孔頂點(diǎn)N距水面4.5米(即NC=4.5米).當(dāng)水位上漲剛好淹沒(méi)小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2006•吉林)如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點(diǎn)E坐標(biāo)為(4,0),頂點(diǎn)G坐標(biāo)為(0,2).將矩形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)F落在y軸的點(diǎn)N處,得到矩形OMNP,OM與GF交于點(diǎn)A.
(1)判斷△OGA和△OMN是否相似,并說(shuō)明理由;
(2)求過(guò)點(diǎn)A的反比例函數(shù)解析式;
(3)設(shè)(2)中的反比例函數(shù)圖象交EF于點(diǎn)B,求直線AB的解析式;
(4)請(qǐng)?zhí)剿鳎呵蟪龅姆幢壤瘮?shù)的圖象,是否經(jīng)過(guò)矩形OEFG的對(duì)稱(chēng)中心,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年吉林省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•吉林)如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時(shí),大孔水面寬度AB=20米,頂點(diǎn)M距水面6米(即MO=6米),小孔頂點(diǎn)N距水面4.5米(即NC=4.5米).當(dāng)水位上漲剛好淹沒(méi)小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年吉林省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•吉林)如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點(diǎn)E坐標(biāo)為(4,0),頂點(diǎn)G坐標(biāo)為(0,2).將矩形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)F落在y軸的點(diǎn)N處,得到矩形OMNP,OM與GF交于點(diǎn)A.
(1)判斷△OGA和△OMN是否相似,并說(shuō)明理由;
(2)求過(guò)點(diǎn)A的反比例函數(shù)解析式;
(3)設(shè)(2)中的反比例函數(shù)圖象交EF于點(diǎn)B,求直線AB的解析式;
(4)請(qǐng)?zhí)剿鳎呵蟪龅姆幢壤瘮?shù)的圖象,是否經(jīng)過(guò)矩形OEFG的對(duì)稱(chēng)中心,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案