【題目】已知:如圖,在梯形ABCD中,AD∥MN∥BC.MN分別交邊AB、DC于點(diǎn)M、N.如果AM:MB=2:3,AD=2,BC=7.求MN的長.
【答案】4
【解析】過點(diǎn)A作AF∥DC交MN于點(diǎn)E,交BC于點(diǎn)F,可以得出四邊形AEND是平行四邊形,四邊形AFCD是平行四邊形,得出EN、FC的值,求出BF的值,再利用三角形相似就可以求出ME的值,從而求出MN.
解:過點(diǎn)A作AF∥DC交MN于點(diǎn)E,交BC于點(diǎn)F,
∵AD∥BC,AF∥DC,
∴四邊形AEND是平行四邊形,四邊形AFCD是平行四邊形,
∴AD=EN=2.AD=FC=2.
∵BC=7,
∴BF=5.
∵ME∥BF,
∴△AME∽△ABF
∴.
∵AM:MB=2:3,
∴AM:AB=2:5,
∴,
∴ME=2
∴MN=4.
“點(diǎn)睛”本題考查了梯形中輔助線的作法和運(yùn)用,平行四邊形的判定即將性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用.解答中正確的作出輔助線是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面給出四邊形ABCD中,∠A、∠B、∠C、∠D的度數(shù)之比,其中能判定四邊形ABCD為平行四邊形的是( )
A. 1∶2∶3∶4 B. 2∶3∶2∶3
C. 2∶2∶3∶3 D. 1∶2∶2∶3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD的邊AB=3,AD=2,將此矩形置入直角坐標(biāo)系中,使AB在x 軸上,點(diǎn)C 在直線y=x-2上.
(1)求矩形各頂點(diǎn)坐標(biāo);
(2)若直線y=x-2與y軸交于點(diǎn)E,拋物線過E、A、B三點(diǎn),求拋物線的關(guān)系式;
(3)判斷上述拋物線的頂點(diǎn)是否落在矩形ABCD內(nèi)部,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2-x-(m+1)=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為符合條件的最小整數(shù),求此方程的根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com