(2005•郴州)附加題:E是四邊形ABCD中AB上一點(diǎn)(E不與A、B重合).?
(1)如圖,當(dāng)四邊形ABCD是正方形時(shí),△ADE、△BCE和△CDE的面積之間有著怎樣的關(guān)系?證明你的結(jié)論.
(2)若四邊形ABCD是矩形時(shí),(1)中的結(jié)論是否仍然成立?為什么?ABCD是平行四邊形呢?
(3)當(dāng)四邊形ABCD是梯形時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.?

【答案】分析:正方形,矩形,平行四邊形圖形中的三個(gè)三角形都是等高的三角形,它們的面積關(guān)系,就要看底邊的關(guān)系了,由于AE+EB=CD,所以S△ADE+S△BCE=S△CDE在這三個(gè)圖形中都成立;梯形不具備這一特征,就不一定成立.
解答:解:①S△ADE+S△BCE=S△CDE?
方法1:同底同高?
S△ADE+S△BCE=
方法2:因?yàn)檫^E作EF∥BC交DC于F,則四邊形AEFD和EBCF是矩形
所以S△AED=S△EFD,S△EBC=S△EFC,?
所以S△ADE+S△BCE=S△EFD+S△EFC=S△DEC

②四邊形ABCD是矩形時(shí)(1)中結(jié)論成立,方法同上
當(dāng)四邊形ABCD是平行四邊形時(shí),結(jié)論還是成立.

③當(dāng)四邊形ABCD是梯形時(shí),①中結(jié)論當(dāng)E點(diǎn)為AB中點(diǎn)時(shí)成立,其它情況不成立不成立.
理由如下:
設(shè)S△ADE=S1,S△BCE=S2,S△DEC=S3,
梯形ABCD上底為a,下底為b面積為S,如圖.
=
如果S△ADE+S△BCE=S△DEC,則有,a(h1-h2)=b(h1-h2).
如果h1=h2,則E為AB中點(diǎn),如果h1≠h2,則a=b,四邊形ABCD是平行四邊形.
點(diǎn)評(píng):解答本題要充分利用正方形、矩形,平行四邊形的對(duì)邊相等的性質(zhì);觀察圖形的底與高的關(guān)系,利用等底,等高的兩個(gè)三角形面積相等,確定三角形的面積關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(02)(解析版) 題型:選擇題

(2005•郴州)附加題:下圖是由九個(gè)等邊三角形組成的一個(gè)六邊形,當(dāng)最小的等邊三角形邊長為2cm時(shí),這個(gè)六邊形的周長為( )cm.

A.30
B.40
C.50
D.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖南省郴州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•郴州)附加題:如圖1,菱形紙片ABCD中,AB=1,∠B=60°,將紙片翻折(如圖2),使D點(diǎn)落在AD所在直線上,并可在直線AD上運(yùn)動(dòng),折痕為EF.當(dāng)<DE<1時(shí),設(shè)AB與DC相交于點(diǎn)G(如圖).
(1)線段AD與DG相等嗎?△ADG與△BCG的面積之和是否隨著DE的變化而變化?為什么?
(2)設(shè)AD=x,重疊部分(圖3中陰影部分)的面積為y,求出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍以及面積y的取值范圍.?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖南省郴州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2005•郴州)附加題:下圖是由九個(gè)等邊三角形組成的一個(gè)六邊形,當(dāng)最小的等邊三角形邊長為2cm時(shí),這個(gè)六邊形的周長為( )cm.

A.30
B.40
C.50
D.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖南省郴州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2005•郴州)附加題:盒中有6個(gè)均勻的球,其中紅、黑、黃三種顏色的球各2個(gè),第一次摸出一球后,不放回盒中,再從剩余的球里摸出一球,則兩次摸到同色球的概率是    .?

查看答案和解析>>

同步練習(xí)冊(cè)答案