(2006•濱州)如圖,已知直角三角形ABC,
(Ⅰ)試作出經(jīng)過(guò)點(diǎn)A,圓心O在斜邊AB上,且與邊BC相切于點(diǎn)E的⊙O及切點(diǎn)E和圓心O(要求:用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法和證明);
(Ⅱ)設(shè)(Ⅰ)中所作的⊙O與邊AB交于異于點(diǎn)A的另一點(diǎn)D.
求證:
(1);
(2)EC•BE=AC•BD.

【答案】分析:(Ⅰ)作∠BAC的角平分線AE交BC與E,過(guò)E點(diǎn)作EO垂直于BC,交AB與O,O即為所求圓心;
(Ⅱ)(1)要證,由組成線段可知只需證明△BDE∽△BEA即可,而∠B為共用角,∠1為弦切角∠4所夾的弧所對(duì)的圓周角所以相等,因此有△BDE∽△BEA,即
(2)要證EC•BE=AC•BD即證,由(1)知,所以需證,即Rt△ACE∽R(shí)t△AED,而在這兩個(gè)三角形中,都有一個(gè)直角,且易證∠1=∠3=∠2,所以可證相似,從而得出所求結(jié)論.
解答:(Ⅰ)解:如圖所示;

(Ⅱ)證明:連接DE,則∠AED=90°,
(1)∵∠4=∠2
∠B=∠B
∴△BDE∽△BEA
;(5分)

(2)∵BC切⊙O于E,
∴OE⊥BC.
又∵AC⊥B,
∴OE∥AC.
∴∠1=∠3.
又易知∠2=∠3,
∴∠1=∠2.
又∵∠C=∠AED=90°,
∴Rt△ACE∽R(shí)t△AED.
.(7分)
又由(Ⅰ)知,,
∴EC•BE=AC•BD.(8分)
點(diǎn)評(píng):此題主要考查了三角形相似和圓之間的關(guān)系,難易程度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•濱州)如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成長(zhǎng)方形零件PQMN,使長(zhǎng)方形PQMN的邊QM在BC上,其余兩個(gè)頂點(diǎn)P,N分別在AB,AC上.
(Ⅰ)求這個(gè)長(zhǎng)方形零件PQMN面積S的最大值;
(Ⅱ)在這個(gè)長(zhǎng)方形零件PQMN面積最大時(shí),能否將余下的材料△APN,△BPQ,△NMC剪下再拼成(不計(jì)接縫用料及損耗)與長(zhǎng)方形PQMN大小一樣的長(zhǎng)方形?若能,試給出一種拼法;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•濱州)如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成長(zhǎng)方形零件PQMN,使長(zhǎng)方形PQMN的邊QM在BC上,其余兩個(gè)頂點(diǎn)P,N分別在AB,AC上.
(Ⅰ)求這個(gè)長(zhǎng)方形零件PQMN面積S的最大值;
(Ⅱ)在這個(gè)長(zhǎng)方形零件PQMN面積最大時(shí),能否將余下的材料△APN,△BPQ,△NMC剪下再拼成(不計(jì)接縫用料及損耗)與長(zhǎng)方形PQMN大小一樣的長(zhǎng)方形?若能,試給出一種拼法;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《分式方程》(02)(解析版) 題型:填空題

(2006•濱州)如圖,在Rt△ABC中,E為斜邊AB上一點(diǎn),AE=2,EB=1,四邊形DEFC為正方形,則陰影部分的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)“選擇、填空題”專練(一)(解析版) 題型:填空題

(2006•濱州)如圖,在Rt△ABC中,E為斜邊AB上一點(diǎn),AE=2,EB=1,四邊形DEFC為正方形,則陰影部分的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•濱州)如圖,在半徑為10的⊙O中,如果弦心距OC=6,那么弦AB的長(zhǎng)等于( )

A.4
B.8
C.16
D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案