如圖,在矩形ABCD中,AB=2BC,E為CD上一點,且AE=AB,M為AE的中點.下列結(jié)論:
①DM=DA;②EB平分∠AEC;③S△ABE=S△ADE;④BE2=2AE•EC.其中結(jié)論正確的個數(shù)是( )

A.1
B.2
C.3
D.4
【答案】分析:①由于DM是直角△ADE斜邊AE上的中線,欲證DM=DA,只需證明AD=AE即可;②在直角△ADE中,由于∠ADE=90°,AD=AE,得出∠DEA=30°,然后分別算出∠AEB與∠CEB的度數(shù)即可;③由于S△ABE=S矩形ABCD,S△ADES矩形ABCD,從而進(jìn)行判斷;④如果設(shè)BC=DA=a,則可用含a的代數(shù)式表示BC、AE、EC的長度,然后在直角△BCE中運用勾股定理算出BE2的值,再算出2AE•EC的值,比較即可.
解答:解:①∵在直角△ADE中,∠ADE=90°,M為AE的中點,∴DM=AE,∵AE=AB,AB=2BC=2DA,∴DM=DA,正確;
②在直角△ADE中,∠ADE=90°,AD=AE,∴∠DEA=30°.∵CD∥AB,∴∠EAB=∠DEA=30°,∠CEB=∠ABE.在△EAB中,∠EAB=30°,AE=AB,∴∠AEB=∠ABE=75°,∴∠CEB=75°,∴EB平分∠AEC,正確;
③∵S△ABE=S矩形ABCD,S△ADE<S△ADC=S矩形ABCD,∴S△ABE>S△ADE,錯誤;
④在矩形ABCD中,設(shè)BC=DA=a,則AE=AB=DC=2BC=2a,DE=AD=a,∴EC=(2-)a.在直角△BCE中,BE2=BC2+CE2=a2+[(2-)a]2=(8-4)a2,2AE•EC=2×2a×(2-)a=(8-4)a2,正確.
故選C.
點評:本題主要考查了直角三角形、矩形的性質(zhì)以及多邊形的面積,勾股定理.綜合性較強,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設(shè)經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達(dá)點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達(dá)點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當(dāng)時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案