【題目】已知不等邊三角形的兩邊長分別是2cm和9cm,如果第三邊的長為整數,那么第三邊的長為( 。
A.8cm
B.10cm
C.8cm或10cm
D.8cm或9cm
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,AB=4,BC=6,∠B=60°,將△ABC沿著射線BC 的方向平移 2 個單位后,得到△△A′B′C′,連接 A′C,則△A′B′C 的周長為__________ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩輛汽車分別從A、B兩地同時出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設甲、乙兩車與B地的路程分別為y甲(km),y乙(km),甲車行駛的時間為x(h),y甲、y乙與x之間的函數圖象如圖所示,結合圖象解答下列問題:
(1)乙車休息了 h.
(2)求乙車與甲車相遇后y乙關于x的函數表達式,并寫出自變量x的取值范圍.
(3)當兩車相距40km時,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函數y=在第一象限內的圖象分別交OA,AB于點C和點D,且△BOD的面積=4.
(1)求直線AO的解析式;
(2)求反比例函數解析式;
(3)求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC于D.
(1)動手操作:利用尺規(guī)作⊙O,使⊙O經過點A、D,且圓心O在AB上;并標出⊙O與AB的另一個交點E(保留作圖痕跡,不寫作法);
(2)綜合應用:在你所作的圖中,
①判斷直線BC與⊙O的位置關系,并說明理由;
②若AB=6,BD=2,求線段BD、BE與劣弧所圍成的圖形面積(結果保留根號和π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數;
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120度時,連接CE,試探究線段AP與線段CE的數量關系,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com