(2003 浙江紹興)已知∠AOB=90°,OM是∠AOB的平分線,按以下要求解答問題:
(1)將三角形的直角頂點P在射線OM上移動,兩直角邊分別與邊OA、OB交于點C、D.
①在圖中,證明:PC=PD;
②在圖中,點G是CD與OP的交點,且PD,求△POD與△PDG的面積之比.
(2)將三角板的直角頂點P在射線OM上移動,一直角邊與邊OB交于點D,OD=1,另一直角邊與直線OA、直線OB分別交于點C、E,使以P、D、E為頂點的三角形與△OCD相似,在圖中作出圖形,試求OP的長.
解 (1)①如圖所示,過P作PH⊥OA,PN⊥OB,垂足分別為H,N,得∠ HPN=90°,∴∠HPC+∠CPN=90°.a) 而∠ CPN+∠NPD=90°,∴∠ HPC=∠NPD.∵ OM是∠AOB的平分線,∴ PH=PN.又∵∠ PHC=∠PND=90°,∴△ PCH≌△PDN.∴ PC=PD.②如圖所示,∵ PC=PD,∴∠PDG=45°.b) 而∠ POD=45°,∴∠ PDG=∠POD.又∵∠ GPD=∠DPO,∴△ POD∽△PDG.∴ .(2) 如圖所示,若PC與邊OA相交.c) ∵∠ PDE>∠CDO,△ PDE∽△OCD.∴∠ CDO=∠PED.∴ CE=CD,而CO⊥ED.∴ OE=OD.∴ .若 PC與邊OA的反向延長線相交,過P作PH⊥OA,PN⊥OB,垂足分別為HN,如圖所示.d) ∵∠ PDE>∠EDC,△ PDE∽△ODC.∴∠ PDE=∠ODC.∵∠ OEC<∠PED,∴∠ PDE=∠HCP.而 PH=PN,∴ Rt△PHC≌Rt△PND.∴ HC=ND,PC=PD.∴∠ PDC=45°.∴∠ PDO=∠PCH=22.5°.∴ OP=OC.設 OP=x,則,∴ ,而 ,∴ ,∴ ,即. |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com