精英家教網 > 初中數學 > 題目詳情
拋物線 y=2(x-1)2-3與y軸的交點坐標是        。
(0,-1)

試題分析:
解:與y軸有交點
則有:x=0,代入得出y=-1
點評:此類試題屬于簡單試題,考生只需把各點帶入分析進而可以求解
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

(12分)如圖,頂點為D的拋物線與x軸相交于A、B兩點,與y軸相交于點C,連結BC,已知△BOC是等腰三角形。

(1)求點B的坐標及拋物線的解析式;
(2)求四邊形ACDB的面積;
(3)若點E(x,y)是y軸右側的拋物線上不同于點B的任意一點,設以A,B,C,E為頂點的四邊形的面積為S。①求S與x之間的函數關系式。②若以A,B,C,E為頂點的四邊形與四邊形ACDB的面積相等,求點E的坐標。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(本題12分)拋物線y=-x2+bx+c經過點A、B、C,已知A(-1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(7分)如圖,已知拋物線經過A(2,0)、B(0,-6)兩點,其對稱軸與軸交于點C.

(1)求該拋物線和直線BC的解析式;
(2)設拋物線與直線BC相交于點D,連結AB、AD,求△ABD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知,如圖1,拋物線過點且對稱軸為直線點B為直線OA下方的拋物線上一動點,點B的橫坐標為m.

(1)求該拋物線的解析式:
(2)若的面積為S.求S關于m的函數關系式,并求出S的最大值.
(3)如圖2,過點B作直線軸,交線段OA于點C,在拋物線的對稱軸上是否存在點D,使是以D為直角頂點的等腰直角三角形?若存在,求出所有符合條件的點B的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知二次函數y=ax2+bx+c的圖象如圖,則a、b、c滿足(      )
A.a<0,b<0,c>0;B.a<0,b<0,c<0;
C.a<0,b>0,c>0;D.a>0,b<0,c>0。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數.
(1)將化成的形式;
(2)指出該二次函數圖象的對稱軸和頂點坐標;
(3)當取何值時,的增大而減小.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某商場將進價40元一個的某種商品按50元一個售出時,能賣出500個,已知這種商品每個漲價一元,銷量減少10個,為賺得最大利潤,售價定為多少?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

若二次函數y=mx2-(2m-1)x+m的圖像頂點在y軸上,則m=      

查看答案和解析>>

同步練習冊答案