如圖,在△ABC中,AD⊥BC,垂足為D,E、F分別是AB、AC的中點.

⑴若∠C=70°,求∠AFD的度數(shù)
⑵當△ABC滿足什么條件時,四邊形AEDF為菱形?為什么?
⑶在⑵的基礎(chǔ)上,△ABC還需滿足什么條件才能使四邊形AEDF為正方形?為什么?
(1)140°(2)AB=AC,證明略 (3)AB=AC且∠BAC=90°,證明略
(1)由AD垂直于BC,根據(jù)垂直定義得到∠ADC=90°,即三角形ADC為直角三角形,又F為AC的中點,根據(jù)斜邊上的中線等于斜邊的一半,可得DF等于AC的一半,再根據(jù)中點定義得到AF與CF相等,且都等于AC的一半,等量代換可得DF=CF,根據(jù)等邊對等角得到∠FDC=∠C,由∠C的度數(shù)求出∠FDC的度數(shù),由∠AFD為三角形FDC的外角,根據(jù)外角性質(zhì)即可求出所求角的度數(shù);
(2)三角形ABC滿足AB=AC時,四邊形AEDF為菱形,理由為:由AB=AC,且AD與BC垂直,根據(jù)三線合一得到D為BC的中點,又F為中點,可得DF為三角形ABC的中位線,可得DF與AB平行,且等于AB的一半,又AE也為AB的一半,等量代換可得AE=DF,又AE與DF平行,根據(jù)一組對邊平行且相等的四邊形為平行四邊形,再由DE也為三角形ABC的中位線,可得ED等于AC的一半,由AB=AC,等量代換可得DE=DF,根據(jù)鄰邊相等的平行四邊形為菱形可得AEDF為菱形;
(3)由第二問三角形ABC滿足AB=AC,得到AEDF為菱形,再加上∠BAC=90°,根據(jù)有一個角為直角的菱形為正方形可得AEDF為正方形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列條件中,不能判定四邊形為平行四邊形是             (   )
A.一組對邊平行,另一組對邊相等B.一組對邊平行且相等
C.兩組對邊分別平行D.對角線互相平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知圖1是圖2中正方體的平面展開圖,其中有五個面內(nèi)都標注了數(shù)字,則圖2中陰影的面是圖1中的            (填數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,有一塊等腰梯形的草坪,草坪上底長48米,下底長108米,上下底相距40米,現(xiàn)要在草坪中修建一條橫、縱向的“”型甬道,甬道寬度相等,甬道面積是整個梯形面積的.設(shè)甬道的寬為米.

(1)求梯形的周長;
(2)用含的式子表示甬道的總長;
(3)求甬道的寬是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD.E、F分別在AD、CD上,DE=CF,AF、BE交于點P.
⑴試說明:AF=BE     ⑵猜測∠BPF的度數(shù),并說明你的結(jié)論的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=8,AD=10.
(1)求矩形ABCD的周長;
(2)E是CD上的點,將△ADE沿折痕AE折疊,使點D落在BC邊上點F處.
①求DE的長;
②點P是線段CB延長線上的點,連接PA,若△PAF是等腰三角形,求PB的長.
(3)M是AD上的動點,在DC 上存在點N,使△MDN沿折痕MN折疊,點D落在BC邊上點T處, 求線段CT長度的最大值與最小值之和。
  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平行四邊形ABCD中,AE⊥BC于E, AF⊥CD于F ,AE=4,AF=6,平行四邊形ABCD的周長為40,則平行四邊形ABCD的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)按語句作圖并回答:
作線段AC(AC=4),以A為圓心a為半徑作圓,再以C為圓心b為半徑作圓(,,圓A與圓C交于B、D兩點),連結(jié)AB、BC、CD、DA.若能作出滿足要求的四邊形ABCD,則應(yīng)滿足什么條件?
 (2)若,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把一個面積為1的正方形等分成兩個面積為的矩形,接著把其中一個面積為的矩形等分成兩個面積為的矩形,再把其中一個面積為的矩形等分成兩個面積為的矩形,如此進行下去,試利用圖形所揭示的規(guī)律計算:           

查看答案和解析>>

同步練習(xí)冊答案