如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)的圖象上,AB⊥x軸于點(diǎn)B,AC⊥y軸于點(diǎn)C,延長CA至點(diǎn)D,使AD=AB,延長BA至點(diǎn)E,使AE=AC.直線DE分別交x軸于點(diǎn)P,Q.當(dāng)QE:DP=4:9時(shí),圖中陰影部分的面積等于   
【答案】分析:過點(diǎn)D作DG⊥x軸于點(diǎn)G,過點(diǎn)E作EF⊥y軸于點(diǎn)F.令A(yù)(t,),則AD=AB=DG=,AE=AC=EF=t,則圖中陰影部分的面積=△ACE的面積+△ABD的面積=t2+×,因此只需求出t2的值即可.先在直角△ADE中,由勾股定理,得出DE=,再由△EFQ∽△DAE,求出QE=,△ADE∽△GPD,求出DP=:,然后根據(jù)QE:DP=4:9,即可得出t2=
解答:解:解法一:過點(diǎn)D作DG⊥x軸于點(diǎn)G,過點(diǎn)E作EF⊥y軸于點(diǎn)F.
令A(yù)(t,),則AD=AB=DG=,AE=AC=EF=t.
在直角△ADE中,由勾股定理,得DE==
∵△EFQ∽△DAE,
∴QE:DE=EF:AD,
∴QE=,
∵△ADE∽△GPD,
∴DE:PD=AE:DG,
∴DP=
又∵QE:DP=4:9,
∴==4:9,
解得t2=
∴圖中陰影部分的面積=AC2+AB2=t2+×=+3=;

解法二:∵QE:DP=4:9,
∴EF:PG=4:9,
設(shè)EF=4t,則PG=9t,
∴A(4t,),
由AC=AE AD=AB,
∴AE=4t,AD=,DG=,GP=9t,
∵△ADE∽△GPD,
∴AE:DG=AD:GP,
4t:=:9t,即t2=,
圖中陰影部分的面積=4t×4t+××=
故答案為:
點(diǎn)評:本題考查了反比例函數(shù)的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),三角形的面積等知識(shí),綜合性較強(qiáng),有一定難度.根據(jù)QE:DP=4:9,得出t2的值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鹽都區(qū)一模)已知二次函數(shù)y=ax2+bx-2的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(4,0),且當(dāng)x=-2和x=5時(shí)二次函數(shù)的函數(shù)值y相等.
(1)求實(shí)數(shù)a、b的值;
(2)如圖1,動(dòng)點(diǎn)E、F同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)E以每秒2個(gè)單位長度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒
5
個(gè)單位長度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)E停止運(yùn)動(dòng)時(shí),點(diǎn)F隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接EF,將△AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到△DEF.
①是否存在某一時(shí)刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請說明理由.
②設(shè)△DEF與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校研究性學(xué)習(xí)小組在研究有關(guān)反比例函及其圖象性質(zhì)的問題,時(shí)發(fā)現(xiàn)了三個(gè)重要結(jié)論.已知:A是反比例函數(shù)y=
kx
(k為非零常數(shù))的圖象上的一動(dòng)點(diǎn).
(1)如圖1過動(dòng)點(diǎn)A作AM⊥x軸,AN⊥y軸,垂足分別為M、N,求證:矩形OMAN的面積是定值;
(2)如圖2,過動(dòng)點(diǎn)A且與雙曲線有唯一公共點(diǎn)A的直線l與x軸交于點(diǎn)C,y軸交于點(diǎn)D,求證:△OCD的面積是定值;
(3)如圖3,若過動(dòng)點(diǎn)A的直線與雙曲線交于另一點(diǎn)B,與x軸交于點(diǎn)C,與y軸交于點(diǎn)D.求證:AD=BC.(任選一種證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校研究性學(xué)習(xí)小組在研究有關(guān)反比例函及其圖象性質(zhì)的問題,時(shí)發(fā)現(xiàn)了三個(gè)重要結(jié)論.已知:A是反比例函數(shù)數(shù)學(xué)公式(k為非零常數(shù))的圖象上的一動(dòng)點(diǎn).
(1)如圖1過動(dòng)點(diǎn)A作AM⊥x軸,AN⊥y軸,垂足分別為M、N,求證:矩形OMAN的面積是定值;
(2)如圖2,過動(dòng)點(diǎn)A且與雙曲線有唯一公共點(diǎn)A的直線l與x軸交于點(diǎn)C,y軸交于點(diǎn)D,求證:△OCD的面積是定值;
(3)如圖3,若過動(dòng)點(diǎn)A的直線與雙曲線交于另一點(diǎn)B,與x軸交于點(diǎn)C,與y軸交于點(diǎn)D.求證:AD=BC.(任選一種證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河南省重點(diǎn)中學(xué)中考數(shù)學(xué)模擬試卷(6月份)(解析版) 題型:解答題

已知二次函數(shù)y=ax2+bx-2的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(4,0),且當(dāng)x=-2和x=5時(shí)二次函數(shù)的函數(shù)值y相等.
(1)求實(shí)數(shù)a、b的值;
(2)如圖1,動(dòng)點(diǎn)E、F同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)E以每秒2個(gè)單位長度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒個(gè)單位長度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)E停止運(yùn)動(dòng)時(shí),點(diǎn)F隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接EF,將△AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到△DEF.
①是否存在某一時(shí)刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請說明理由.
②設(shè)△DEF與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年江蘇省鎮(zhèn)江中學(xué)高中單獨(dú)招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

某校研究性學(xué)習(xí)小組在研究有關(guān)反比例函及其圖象性質(zhì)的問題,時(shí)發(fā)現(xiàn)了三個(gè)重要結(jié)論.已知:A是反比例函數(shù)(k為非零常數(shù))的圖象上的一動(dòng)點(diǎn).
(1)如圖1過動(dòng)點(diǎn)A作AM⊥x軸,AN⊥y軸,垂足分別為M、N,求證:矩形OMAN的面積是定值;
(2)如圖2,過動(dòng)點(diǎn)A且與雙曲線有唯一公共點(diǎn)A的直線l與x軸交于點(diǎn)C,y軸交于點(diǎn)D,求證:△OCD的面積是定值;
(3)如圖3,若過動(dòng)點(diǎn)A的直線與雙曲線交于另一點(diǎn)B,與x軸交于點(diǎn)C,與y軸交于點(diǎn)D.求證:AD=BC.(任選一種證明)

查看答案和解析>>

同步練習(xí)冊答案