如圖1和2,四邊形ABCD是菱形,點(diǎn)P是對(duì)角線AC上一點(diǎn),以點(diǎn)P為圓心,PB為半徑的弧,交BC的延長(zhǎng)線于點(diǎn)F,連接PF,PD,PB.
(1)如圖1,點(diǎn)P是AC的中點(diǎn),請(qǐng)寫出PF和PD的數(shù)量關(guān)系:______;
(2)如圖2,點(diǎn)P不是AC的中點(diǎn),
①求證:PF=PD.
②若∠ABC=40°,直接寫出∠DPF的度數(shù).

【答案】分析:(1)先根據(jù)菱形的對(duì)角線互相平分得出PB=PD,而由已知有PB=PF,則PF=PD;
(2)①先由菱形的性質(zhì)得出AB=AD,∠BAC=∠DAC,再由SAS證明△ABP≌△ADP,得出PB=PD,又PB=PF,則PF=PD;
②由于PB=PD=PF,以P為圓心,PB為半徑作圓P,則點(diǎn)B、F、D都在圓P上,連接BD,則∠DPF=2∠DBF=∠ABC=40°.
解答:(1)解:∵四邊形ABCD是菱形,
∴PB=PD,
∵PB=PF,
∴PF=PD.
故答案為:PF=PD;

(2)①證明:∵四邊形ABCD是菱形,
∴AB=AD,∠BAC=∠DAC.
在△ABP和△ADP中,

∴△ABP≌△ADP(SAS),
∴PB=PD,
又∵PB=PF,
∴PF=PD.

②解:以P為圓心,PB為半徑作圓P,則點(diǎn)B、F、D都在圓P上,連接BD.
由圓周角定理,可得∠DPF=2∠DBF,
又∵四邊形ABCD是菱形,
∴∠ABC=2∠DBF,
∴∠DPF=∠ABC=40°.
點(diǎn)評(píng):此題考查了菱形的性質(zhì)與判定、軸對(duì)稱性與中心對(duì)稱性.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖所示,在四邊形ABCD中,AD∥BC,BC>AD,∠B與∠C互余,將AB,CD分別平移到EF和EG的位置,則△EFG為
直角
三角形,若AD=2cm,BC=8cm,則FG=
6
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶安區(qū)一模)已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.
(1)將兩個(gè)矩形疊合成如圖10,求證:四邊形ABCD是菱形;
(2)若菱形ABCD的周長(zhǎng)為20,BE=3,求矩形BEDG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•葫蘆島)如圖1和2,四邊形ABCD是菱形,點(diǎn)P是對(duì)角線AC上一點(diǎn),以點(diǎn)P為圓心,PB為半徑的弧,交BC的延長(zhǎng)線于點(diǎn)F,連接PF,PD,PB.
(1)如圖1,點(diǎn)P是AC的中點(diǎn),請(qǐng)寫出PF和PD的數(shù)量關(guān)系:
PF=PD
PF=PD
;
(2)如圖2,點(diǎn)P不是AC的中點(diǎn),
①求證:PF=PD.
②若∠ABC=40°,直接寫出∠DPF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1和2,四邊形ABCD是菱形,點(diǎn)P是對(duì)角線AC上一點(diǎn),以點(diǎn)P為圓心,PB為半徑的弧,交BC的延長(zhǎng)線于點(diǎn)F,連接PF,PD,PB.
(1)如圖1,點(diǎn)P是AC的中點(diǎn),請(qǐng)寫出PF和PD的數(shù)量關(guān)系:______;
(2)如圖2,點(diǎn)P不是AC的中點(diǎn),
①求證:PF=PD.
②若∠ABC=40°,直接寫出∠DPF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案