如圖,在△ABC中,AB=AC,∠A=36°,BD為角平分線,DE⊥AB,垂足為E.

(1)寫出圖中一對全等三角形和一對相似比不為1的相似三角形;

(2)選擇(1)中一對加以證明.


解:(1)△ADE≌△BDE,△ABC∽△BCD;

(2)證明:∵AB=AC,∠A=36°,

∴∠ABC=∠C=72°,

∵BD為角平分線,

∴∠ABD=∠ABC=36°=∠A,

在△ADE和△BDE中

∴△ADE≌△BDE(AAS);

證明:∵AB=AC,∠A=36°,

∴∠ABC=∠C=72°,

∵BD為角平分線,

∴∠DBC=∠ABC=36°=∠A,

∵∠C=∠C,

∴△ABC∽△BCD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,幾何體上半部為正三棱柱,下半部為圓柱,其俯視圖是( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


關(guān)于x的方程x2+2x﹣m=0有兩個相等的實數(shù)根,則m= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,CA=CB,∠ACB=90°,以AB的中點D為圓心,作圓心角為90°的扇形DEF,點C恰在EF上,設(shè)∠BDF=α(0°<α<90°),當α由小到大變化時,圖中陰影部分的面積(  )

 

A.

由小到大

B.

由大到小

 

C.

不變

D.

先由小到大,后由大到小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標系中,點A的坐標為(0,6),將△OAB沿x軸向左平移得到△O′A′B′,點A的對應(yīng)點A′落在直線y=﹣x上,則點B與其對應(yīng)點B′間的距離為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


定義:數(shù)學(xué)活動課上,樂老師給出如下定義:有一組對邊相等而另一組對邊不相等的凸四邊形叫做對等四邊形.

理解:(1)如圖1,已知A、B、C在格點(小正方形的頂點)上,請在方格圖中畫出以格點為頂點,AB、BC為邊的兩個對等四邊形ABCD;

(2)如圖2,在圓內(nèi)接四邊形ABCD中,AB是⊙O的直徑,AC=BD.求證:四邊形ABCD是對等四邊形;

(3)如圖3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,點A在BP邊上,且AB=13.用圓規(guī)在PC上找到符合條件的點D,使四邊形ABCD為對等四邊形,并求出CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使▱ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認為其中錯誤的是(  )

 

A.

①②

B.

②③

C.

①③

D.

②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A(0,3),C(3,0).

(Ⅰ)求拋物線的解析式和tan∠BAC的值;

(Ⅱ)在(Ⅰ)條件下:

(1)P為y軸右側(cè)拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ACB相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

(2)設(shè)E為線段AC上一點(不含端點),連接DE,一動點M從點D出發(fā),沿線段DE以每秒一個單位速度運動到E點,再沿線段EA以每秒個單位的速度運動到A后停止,當點E的坐標是多少時,點M在整個運動中用時最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知菱形的周長為,一條對角線長為,則這個菱形的面積為_________.

查看答案和解析>>

同步練習(xí)冊答案