【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=8,CF=6,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?
并說明理由.
【答案】(1)證明見解析;(2)5;(3)當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.證明見解析.
【解析】試題分析:(1)根據(jù)平行線的性質(zhì)以及角平分線的性質(zhì)得出∠1=∠2,∠3=∠4,進而得出答案;(2)根據(jù)已知得出∠2+∠4=∠5+∠6=90°,進而利用勾股定理求出EF的長,即可得出CO的長;(3)根據(jù)平行四邊形的判定以及矩形的判定得出即可.
試題解析:(1)證明:∵MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF;
(2)∵∠2=∠5,∠4=∠6,
∴∠2+∠4=∠5+∠6=90°,
∵CE=8,CF=6,
∴EF==10,
∴OC=EF=5;
(3)當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.
證明:當O為AC的中點時,AO=CO,
∵EO=FO,
∴四邊形AECF是平行四邊形,
∵∠ECF=90°,
∴平行四邊形AECF是矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標準,超出或不足的部分分別用正數(shù)、負數(shù)來表示,記錄如下表:若每袋標準質(zhì)量為450g,則這批樣品的總質(zhì)量是多少?
與標準質(zhì)量的差值(單位:g) | -3 | -2 | 0 | 1 | 1.5 | 2.5 |
袋數(shù)(單位:袋) | 1 | 4 | 3 | 4 | 5 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A=70°,∠B=55°,則△ABC是( )
A. 鈍角三角形 B. 等腰三角形
C. 等邊三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表記錄了甲、乙、丙、丁四名八年級學(xué)生最近幾次校數(shù)學(xué)競賽成績的平均數(shù)與方差:
甲 | 乙 | 丙 | 丁 | |
平均數(shù)(分) | 115 | 110 | 115 | 110 |
方差 | 3.4 | 3.4 | 7.3 | 8.5 |
根據(jù)表中數(shù)據(jù),要從中選擇一名成績好且發(fā)揮穩(wěn)定的學(xué)生參加市數(shù)學(xué)競賽,應(yīng)該選擇( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=2(x-1)2+3的圖像,可以將函數(shù)y=2x2的圖像( )
A.向左平移1個單位長度,再向上平移3個單位長度
B.向左平移1個單位長度,再向下平移3個單位長度
C.向右平移1個單位長度,再向上平移3個單位長度
D.向右平移1個單位長度,再向下平移3個單位長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】測量計算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點處觀測旗桿頂點A的仰角為50°,觀測旗桿底部B點的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列判斷:①一組對邊平行,另一組對邊相等的四邊形是平行四邊形;②對角線相等的四邊形是矩形;③有一條對角線平分一個內(nèi)角的平行四邊形為菱形.其中不正確的有( )
A.3個B.2個C.1個D.0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2010年11月舉辦國際花卉博覽會,其間展出約320000株新鮮花卉、珍貴盆景、罕見植株,320000這個數(shù)用科學(xué)記數(shù)法表示,結(jié)果正確的是( )
A.0.32×106
B.3.2×104
C.3.2×105
D.32×104
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com