【題目】如圖,⊙C經(jīng)過原點且與兩坐標(biāo)軸分別交于點A和點B,點A的坐標(biāo)為(0,3),D為⊙C在第一象限內(nèi)的一點且∠ODB=60°.
求:(1)求線段AB的長及⊙C的半徑;
(2)求B點坐標(biāo)及圓心C的坐標(biāo).
【答案】(1)6,3;(2)(3,0),(,)
【解析】
(1)在Rt△OAB中,只要證明∠OAB=∠ODB=60°,利用直角三角形30度角性質(zhì)即可解決問題.
(2)過C點作CE⊥OB于E,利用直角三角形30度角性質(zhì)求出OB的長,再利用垂徑定理以及三角形中位線定理求出CE即可解決問題.
(1)∵點A的坐標(biāo)為(0,3),∴OA=3.
∵∠ODB=∠OAB,∠ODB=60°,∴∠OAB=60°.
∵∠AOB是直角,∴AB是⊙C的直徑,∴∠OBA=30°,∴AB=2OA=6,∴⊙C的半徑r=3;
(2)過C點作CE⊥OB于E.在Rt△OAB中,∠OBA=30°,∴OB=AB=×6=3,∴B的坐標(biāo)為:(3,0),由垂徑定理得:OE=OB=.
∵AC=BC,OE=BE,∴CE=OA=×3=,∴C的坐標(biāo)為().
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)在旋轉(zhuǎn)過程中點B所經(jīng)過的路徑長為______;
(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太原是一座具有4700多年歷史、2500年建城史的歷史古都,系有“錦繡太原城”的美譽(yù),在“我可愛的家鄉(xiāng)”主題班會中,主持人準(zhǔn)備了“晉祠園林”、“崇山大佛”、“龍山石窟”、“凌霄雙塔”這四處景點的照片各一張,并將它們背面朝上放置(照片背面完全相同),甲同學(xué)從中隨機(jī)抽取一張,不放回,乙再從剩下的照片中隨機(jī)抽取一張,若要根據(jù)抽取的照片作相關(guān)景點介紹,求甲、乙兩人中恰好有一人介紹“晉祠園林”的概率.(提示:可用照片序號列表或畫樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為等腰直角三角形,,.
(1)如圖1,直接寫出點的坐標(biāo);
(2)如圖2,若為邊上一動點,連接,過作,交于點,交于點,點是的中點,連接、,猜想的度數(shù),并說明理由.
(3)如圖3,在(2)的條件下,過點作,交軸于點,連接,當(dāng)點在邊上(不含端點)運(yùn)動過程中,等式是否成立?若成立,請證明:若不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為,則圖中所有正方形的面積的和是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中∠A=60°,BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,連接PM,PN,則下列結(jié)論:①PM=PN;②;③△PMN為等邊三角形;④當(dāng)∠ABC=45°時,BN=PC.其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1的單位正方形組成的網(wǎng)格中,按要求畫出坐標(biāo)系及△A1B1C1及△A2B2C2;
(1)若點A、C的坐標(biāo)分別為(﹣3,0)、(﹣2,3),請畫出平面直角坐標(biāo)系并指出點B的坐標(biāo);
(2)畫出△ABC關(guān)于y軸對稱再向上平移1個單位后的圖形△A1B1C1;
(3)以圖中的點D為位似中心,將△A1B1C1作位似變換且把邊長放大到原來的兩倍,得到△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】創(chuàng)新需要每個人的參與,就拿小華來說,為了解決曬衣服的,聰明的他想到了一個好辦法,在家寬敞的院內(nèi)地面上立兩根等長的立柱、 (均與地面垂直),并在立柱之間懸掛一根繩子.由于掛的衣服比較多,繩子的形狀近似成了拋物線,如圖,已知立柱米, 米.
(1)求繩子最低點離地面的距離;
(2)為了防止衣服碰到地面,小華在離為米的位置處用一根垂直于地面的立柱撐起繩子 (如圖2),使左邊拋物線的最低點距為米,離地面米,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,折疊矩形ABCD,使點B落在對角線AC上的點F處,若BC=8,AB=6,則線段CE的長度是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com