如圖,已知AB是⊙O的直徑,BC是弦,∠ABC=30°,過圓心O作OD⊥BC交弧BC于點(diǎn)D,連接DC,則∠DCB的度數(shù)為( )度.

A.30
B.45
C.50
D.60
【答案】分析:根據(jù)已知條件“過圓心O作OD⊥BC交弧BC于點(diǎn)D、,∠ABC=30°”、及直角三角形OBE的兩個(gè)銳角互余求得∠BOE=60°;然后根據(jù)同弧BD所對(duì)的圓周角∠DCB是所對(duì)的圓心角∠DOB的一半,求得∠DCB的度數(shù).
解答:解:∵OD⊥BC,∠ABC=30°,
∴在直角三角形OBE中,
∠BOE=60°(直角三角形的兩個(gè)銳角互余);
又∵∠DCB=∠DOB(同弧所對(duì)的圓周角是所對(duì)的圓心角的一半),
∴∠DCB=30°;
故選A.
點(diǎn)評(píng):本題主要考查了圓周角定理,圓心角、弧、弦的關(guān)系.解此類題目要注意將圓的問題轉(zhuǎn)化成三角形的問題再進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長(zhǎng)線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時(shí),求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案