如圖,已知在△ABC中,AB=AC,∠BAC=90°,分別過B、C向過A的直線作垂線,垂足分別為E、F.
(1)如圖①過A的直線與斜邊BC不相交時,求證:EF=BE+CF;
(2)如圖②過A的直線與斜邊BC相交時,其他條件不變,若BE=10,CF=3,求:FE長.

(1)證明:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,
∴∠CAF=∠EBA,
在△ABE和△AFC中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∴EF=EB+CF.

(2)解:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴∠CAF=∠ABE,
在△ABE和△AFC中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC=3,BE=AF=10.
∴EF=AF-CF=10-3=7.
分析:(1)此題根據(jù)已知條件容易證明△BEA≌△AFC,然后利用對應(yīng)邊相等就可以證明題目的結(jié)論;
(2)根據(jù)(1)知道△BEA≌△AFC仍然成立,再根據(jù)對應(yīng)邊相等就可以求出EF了.
點評:此題主要考查了全等三角形的性質(zhì)與判定,利用它們解決問題,經(jīng)常用全等來證線段和的問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線,AB=9cm,AC=7cm,BC=8m,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,BD為∠ABC的平分線,AB=BC,點P在BD上,PM⊥AD于M,PN⊥CD于N,求證:PM=PN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分線.
(1)∠ADC=
60°
60°

(2)求證:BC=CD+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點P.當∠A=70°時,則∠BPC的度數(shù)為
125°
125°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,CD=CE,∠A=∠ECB,試說明CD2=AD•BE.

查看答案和解析>>

同步練習冊答案