【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,,則下列結(jié)論:①∠CAD=30° ② ③S平行四邊形ABCD=ABAC ④,正確的個數(shù)是( )
A.1 B.2 C.3D.4
【答案】D
【解析】
①先根據(jù)角平分線和平行四邊形性質(zhì)得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;
②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計算OC=和OD的長,可得BD的長;
③因為∠BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;
④根據(jù)三角形中位線定理可作判斷.
①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=1,
∴△ABE是等邊三角形,
∴AE=BE=1,
∵BC=2,
∴EC=1,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正確;
②∵BE=EC,OA=OC,
∴OE=AB=,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,
∵四邊形ABCD是平行四邊形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD==,
∴BD=2OD=,
故②正確;
③由②知:∠BAC=90°,
∴SABCD=ABAC,
故③正確;
④由②知:OE是△ABC的中位線,
∴OE=AB,
∵AB=BC,
∴OE=BC=AD,
故④正確;
正確的有:①②③④,
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,老師準(zhǔn)備了若干個如圖1的三種紙片,A種紙片是邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片是長為a、寬為b的長方形.用A種紙片- -張,B種紙片一張,C種紙片兩張可拼成如圖2的大正方形.
(1)請用兩種不同的方法求圖2大正方形的面積(答案直接填寫到題中橫線上);
方法1_________________;
方法2______________________.
(2)觀察圖2,請你直接寫出下列三個代數(shù)式: (a+b)2, a2+b2, ab之間的等量關(guān)系;
(3)類似的,請你用圖1中的三種紙片拼一個圖形驗證: (a+b)(a+2b)=a2 + 3ab+2b2,請你將該示意圖畫在答題卡上;
(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知: a+b=5,a2+b2=11, 求ab的值:
②已知(x- 2018)2 +(x- 2020)2=34,求(x- 2019)2的值,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,已知A(﹣1,0),C(0,3)
(1)求該拋物線的表達式;
(2)求BC的解析式;
(3)點M是對稱軸右側(cè)點B左側(cè)的拋物線上一個動點,當(dāng)點M運動到什么位置時,△BCM的面積最大?求△BCM面積的最大值及此時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=10°,點P在OB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……
請按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn,若之后就不能再畫出符合要求點Pn+1了,則n=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據(jù)圖中信息解答下列問題:
(1)該超市“元旦”期間共銷售 個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應(yīng)的扇形圓心角是 度;
(2)補全條形統(tǒng)計圖;
(3)如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)沿海開發(fā)公司準(zhǔn)備投資開發(fā)A、B兩種新產(chǎn)品,通過市場調(diào)研發(fā)現(xiàn):
(1)若單獨投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系:yA=kx;
(2)若單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系:yB=ax2+bx.
(3)根據(jù)公司信息部的報告,yA,yB(萬元)與投資金額x(萬元)的部分對應(yīng)值如下表所示:
(1)填空:yA= ;yB= ;
(2)若公司準(zhǔn)備投資20萬元同時開發(fā)A、B兩種新產(chǎn)品,設(shè)公司所獲得的總利潤為W(萬元),試寫出W與某種產(chǎn)品的投資金額x(萬元)之間的函數(shù)關(guān)系式;
(3)請你設(shè)計一個在(2)中能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊△ABC邊AB上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC和BC上,則CE:CF的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一棵樹高h(m)與生長時間n(年)之間有一定關(guān)系,請你根據(jù)下表中數(shù)據(jù),寫出h(m)與n(年)之間的關(guān)系式:_____.
n/年 | 2 | 4 | 6 | 8 | … |
h/m | 2.6 | 3.2 | 3.8 | 4.4 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中l1,l,2表示兩人離A地的距離s(m)與時間t(h)的關(guān)系,請結(jié)合圖象解答下列問題:
(1)表示甲離A地的距離與時間關(guān)系的圖象是 (填l1或l2);甲的速度是 (km/h);乙的速度是 (km/h);
(2)甲出發(fā)多長時間后兩人相遇?(利用方程解決)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com