某籃球隊(duì)12名隊(duì)員的年齡如表:

年齡(歲)

18

19

20

21

人數(shù)

5

4

1

2

則這12名隊(duì)員年齡的眾數(shù)和平均數(shù)分別是( 。

 

A.

18,19

B.

19,19

C.

18,19.5

D.

19,19.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


在函數(shù)y=中,自變量x的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,拋物線y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)M(﹣2,),頂點(diǎn)坐標(biāo)為N(﹣1,),且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)P為拋物線對(duì)稱(chēng)軸上的動(dòng)點(diǎn),當(dāng)△PBC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);

(3)在直線AC上是否存在一點(diǎn)Q,使△QBM的周長(zhǎng)最?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在邊AD,BC上,且DE=CF,連接OE,OF.求證:OE=OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖1,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+12的圖象與y軸交于點(diǎn)A,與x軸交于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),連接AB,AC.

(1)點(diǎn)B的坐標(biāo)為    ,點(diǎn)C的坐標(biāo)為   ;

(2)過(guò)點(diǎn)C作射線CD∥AB,點(diǎn)M是線段AB上的動(dòng)點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),且始終滿足BM=AP(點(diǎn)M不與點(diǎn)A,點(diǎn)B重合),過(guò)點(diǎn)M作MN∥BC分別交AC于點(diǎn)Q,交射線CD于點(diǎn)N (點(diǎn) Q不與點(diǎn)P重合),連接PM,PN,設(shè)線段AP的長(zhǎng)為n.

①如圖2,當(dāng)n<AC時(shí),求證:△PAM≌△NCP;

②直接用含n的代數(shù)式表示線段PQ的長(zhǎng);

③若PM的長(zhǎng)為,當(dāng)二次函數(shù)y=﹣x2+12的圖象經(jīng)過(guò)平移同時(shí)過(guò)點(diǎn)P和點(diǎn)N時(shí),請(qǐng)直接寫(xiě)出此時(shí)的二次函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


在某一時(shí)刻,測(cè)得一根高為1.8m的竹竿的影長(zhǎng)為3m,同時(shí)測(cè)得一根旗桿的影長(zhǎng)為25m,那么這根旗桿的高度為   m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知關(guān)于x的方程mx2﹣(m+2)x+2=0(m≠0).

(1)求證:方程總有兩個(gè)實(shí)數(shù)根;

(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某小區(qū)為了排污,需鋪設(shè)一段全長(zhǎng)為720米的排污管道,為減少施工對(duì)居民生活的影響,須縮短施工時(shí)間,實(shí)際施工時(shí)每天的工作效率比原計(jì)劃提高20%,結(jié)果提前2天完成任務(wù).設(shè)原計(jì)劃每天鋪設(shè)x米,下面所列方程正確的是(  )

 

A.

=2

B.

=2

 

C.

=2

D.

=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


數(shù)學(xué)問(wèn)題:計(jì)算+++…+(其中m,n都是正整數(shù),且m≥2,n≥1).

探究問(wèn)題:為解決上面的數(shù)學(xué)問(wèn)題,我們運(yùn)用數(shù)形結(jié)合的思想方法,通過(guò)不斷地分割一個(gè)面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來(lái),并采取一般問(wèn)題特殊化的策略來(lái)進(jìn)行探究.

探究一:計(jì)算+++…+

第1次分割,把正方形的面積二等分,其中陰影部分的面積為;

第2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+;

第3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;

第n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是

根據(jù)第n次分割圖可得等式:+++…+=1﹣

探究二:計(jì)算+++…+

第1次分割,把正方形的面積三等分,其中陰影部分的面積為;

第2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+;

第3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;

第n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是

根據(jù)第n次分割圖可得等式:+++…+=1﹣,

兩邊同除以2,得+++…+=

探究三:計(jì)算+++…+

(仿照上述方法,只畫(huà)出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫(xiě)出探究過(guò)程)

解決問(wèn)題:計(jì)算+++…+

(只需畫(huà)出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)

根據(jù)第n次分割圖可得等式: +++…+=1 ,

所以,+++…+=  

拓廣應(yīng)用:計(jì)算 +++…+

查看答案和解析>>

同步練習(xí)冊(cè)答案