【題目】某小學(xué)為每個班級配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動加熱,重復(fù)上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫和時間的關(guān)系如下圖所示,回答下列問題:

(1)分別求出當(dāng)0≤x≤88<x≤a時,yx之間的關(guān)系式;

(2)求出圖中a的值;

(3)下表是該小學(xué)的作息時間,若同學(xué)們希望在上午第一節(jié)下課8:20時能喝到不超過40℃的開水,已知第一節(jié)下課前無人接水,請直接寫出生活委員應(yīng)該在什么時間或時間段接通飲水機(jī)電源.(不可以用上課時間接通飲水機(jī)電源)

時間

節(jié)次

7:20

到校

7:45~8:20

第一節(jié)

8:30~9:05

第二節(jié)

【答案】(1)當(dāng)0≤x≤8時,y=10x+20; 當(dāng)8<x≤a時,;(2)a=40;(3)在7:207:38~7:45時打開飲水機(jī).

【解析】分析:(1)由函數(shù)圖象可設(shè)函數(shù)解析式,再由圖中坐標(biāo)代入解析式,即可求得y與x的關(guān)系式;
(2)將y=20代入y,即可得到a的值;
(3)要想喝到不超過40℃的熱水,讓解析式小于等于40,則可得x的取值范圍,再由題意可知開飲水機(jī)的時間.

詳解:

1)當(dāng)0≤x≤8時,設(shè)y=k1x+b,

將(020),(8,100)代入y=k1x+b

k1=10,b=20

∴當(dāng)0≤x≤8時,y=10x+20;

當(dāng)8x≤a時,設(shè)y= ,

將(8,100)代入y=

k2=800

∴當(dāng)8x≤a時,y=

∴當(dāng)0≤x≤8時,y=10x+20

當(dāng)8x≤a時,y=;

2)將y=20代入y=,

解得a=40

3)要想喝到不超過40℃的熱水,則:

10x+20≤40,

0x≤2

≤40,

20≤x40

因?yàn)?/span>40分鐘為一個循環(huán),

所以820喝到不超過40℃的開水,

則需要在820﹣(40+20)分鐘=720

或在(82040分鐘)﹣2分鐘=738745打開飲水機(jī)

故在720738745時打開飲水機(jī).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項(xiàng),得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯誤變形的個數(shù)是( 。﹤

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果m<n<0,那么下列式子中錯誤的是(   )

A. m-9<n-9 B. -m>-n C. < D. >1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( 。

A. 當(dāng)m=﹣3時,函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,

B. 當(dāng)m>0時,函數(shù)圖象截x軸所得的線段長度大于

C. 當(dāng)m≠0時,函數(shù)圖象經(jīng)過同一個點(diǎn)

D. 當(dāng)m<0時,函數(shù)在x>時,yx的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進(jìn)價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

18000

第二周

4

10

31000

(1)求A,B兩種型號的凈水器的銷售單價;

(2)若電器公司準(zhǔn)備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?

(3)在(2)的條件下,公司銷售完這30臺凈水器能否實(shí)現(xiàn)利潤為12800元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平行四邊形ABCD的對角線AC,BD相交于點(diǎn)O

1)如圖①,EF過點(diǎn)O且與AB,CD分別相交于點(diǎn)EF,AC=6,AEO的周長為10,求CF+OF的值.

2)如圖②,將平行四邊形ABCD(紙片)沿過對角線交點(diǎn)O的直線EF折疊,點(diǎn)A落在A1處,點(diǎn)B落在點(diǎn)B1處,設(shè)FB1CD于點(diǎn)G,A1B1分別交CDDE于點(diǎn)H、P,請在折疊后的圖形中找一條線段,使它與EP相等,并加以證明.

3)如圖③,ABO是等邊三角形,AB=1,點(diǎn)EBC邊上,且BE=1,則2EC-2EO= 直接填結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的漢字聽寫大賽.各參賽選手成績的數(shù)據(jù)分析如下表所示,則以下判斷錯誤的是( 。

A. 八(2)班的總分高于八(1)班 B. 八(2)班的成績比八(1)班穩(wěn)定

C. 八(2)班的成績集中在中上游 D. 兩個班的最高分在八(2)班

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,ACCB,FAB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動,且始終保持ADCE.連接DE、DFEF

(1)求證:△ADF≌△CEF;

(2)試證明△DFE是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象如圖所示,則下列結(jié)論①k<0;a>0;③不等式x+a<kx+b的解集是x<3;ab=3k3,正確的個數(shù)是()

A. 3B. 2C. 1D. 4

查看答案和解析>>

同步練習(xí)冊答案