(本題滿分7分)如圖,等腰梯形?ABCD的底邊AD在x軸上,頂點(diǎn)C在y軸正半軸上,B(4,2),一次函數(shù)y=kx-1的圖象平分它的面積,關(guān)于x的函數(shù)y=mx2-(3m+k)x+2m+k的圖象與坐標(biāo)軸只有兩個(gè)交點(diǎn),求m的值.

 

【答案】

解:過(guò)B作BE⊥AD于E,連接OB、CE交于點(diǎn)P,

∵P為矩形OCBE的對(duì)稱中心,則過(guò)點(diǎn)P的直線平分矩形OCBE的面積.

∵P為OB的中點(diǎn),而B(4,2),

P點(diǎn)坐標(biāo)為(2,1),

在Rt△ODC與Rt△EAB中,OC=BE,AB=CD,

Rt△ODC≌Rt△EAB(HL),△ODC≌Rt△EBA,

過(guò)點(diǎn)(0,-1)與P(2,1)的直線平分等腰梯形面積,這條直線為y=kx-1.

2k-1=1,則k=1.

∵關(guān)于x的函數(shù)y=mx2-(3m+1)x+2m+1的圖象與坐標(biāo)軸只有兩個(gè)交點(diǎn),

∴①當(dāng)m=0時(shí),y=-x+1,其圖象與坐標(biāo)軸有兩個(gè)交點(diǎn)(0,1),(1,0);

②當(dāng)m≠0時(shí),函數(shù)y=mx2-(3m+1)x+2m+1的圖象為拋物線,且與y軸總有一個(gè)交點(diǎn)(0,2m+1),

若拋物線過(guò)原點(diǎn)時(shí),2m+1=0,

即m=- 12,此時(shí),△=(3m+1)2-4m(2m+1)=(m+1)2>0,

故拋物線與x軸有兩個(gè)交點(diǎn)且過(guò)原點(diǎn),符合題意.

若拋物線不過(guò)原點(diǎn),且與x軸只有一個(gè)交點(diǎn),也符合題意.

綜上所述,m的值為m=0或- 12.

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

.(本題滿分5分)如圖一根木棒放在數(shù)軸上,木棒的左端與數(shù)軸上的點(diǎn)A重合,右端與點(diǎn)B重合.

 

 


 

 

1.若將木棒沿?cái)?shù)軸向右水平移動(dòng),則當(dāng)它的左端移動(dòng)到B點(diǎn)時(shí),它的右端在數(shù)軸上所對(duì)應(yīng)的數(shù)為20;若將木棒沿?cái)?shù)軸向左水平移動(dòng),則當(dāng)它的右端移動(dòng)到A點(diǎn)時(shí),則它的左端在數(shù)軸上所對(duì)應(yīng)的數(shù)為5(單位:cm),由此可得到木棒長(zhǎng)為    cm.

2.由題(1)的啟發(fā),請(qǐng)你借助“數(shù)軸”這個(gè)工具幫助小紅解決下列問(wèn)題:

問(wèn)題:一天,小紅去問(wèn)曾當(dāng)過(guò)數(shù)學(xué)老師現(xiàn)在退休在家的爺爺?shù)哪挲g,爺爺說(shuō):“我若是你現(xiàn)在這么大,你還要40年才出生;你若是我現(xiàn)在這么大,我已經(jīng)125歲,是老壽星了,哈哈!”,請(qǐng)求出爺爺現(xiàn)在多少歲了?

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),每個(gè)小方格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.在第一象限內(nèi)有橫、縱坐標(biāo)均為整數(shù)的A、B兩點(diǎn),且OA= OB=

(1)寫出A、B兩點(diǎn)的坐標(biāo);

(2)畫出線段AB繞點(diǎn)O旋轉(zhuǎn)一周所形成的圖形,并求其面積(結(jié)果保留π).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分6分)

如圖,在中,點(diǎn)的中點(diǎn),連接并延長(zhǎng),交的延長(zhǎng)線于點(diǎn)F.

求證:

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)
如圖,四邊形ABCD是長(zhǎng)方形.

(1)作△ABC關(guān)于直線AC對(duì)稱的圖形;
(2)試判斷(1)中所作的圖形與△ACD重疊部分的三角形形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)
如圖,在平面直角坐標(biāo)系中,已知拋物線軸于兩點(diǎn),交軸于點(diǎn).

(1)求此拋物線的解析式;
(2)若此拋物線的對(duì)稱軸與直線交于點(diǎn)D,作⊙D與x軸相切,⊙D交軸于點(diǎn)E、F兩點(diǎn),求劣弧EF的長(zhǎng);
(3)P為此拋物線在第二象限圖像上的一點(diǎn),PG垂直于軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線AC分為1︰2兩部分.

查看答案和解析>>

同步練習(xí)冊(cè)答案