精英家教網 > 初中數學 > 題目詳情

【題目】拋物線y=x2﹣2x+3的頂點坐標是

【答案】(1,2)
【解析】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,
∴拋物線y=x2﹣2x+3的頂點坐標是(1,2).
所以答案是:(1,2).
【考點精析】根據題目的已知條件,利用二次函數的性質的相關知識可以得到問題的答案,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標是(8,4),連接AC,BC

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;

(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.設運動時間為t秒,當t為何值時,PA=QA?

(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】多項式2x3﹣5x2+x﹣1與多項式3x3+(2m﹣1)x2﹣5x+3的和不含二次項,則m=( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數過(﹣2,4),(﹣4,4)兩點

(1)求二次函數的解析式;

(2)將沿x軸翻折,再向右平移2個單位,得到拋物線,直線y=m(m>0)交于M、N兩點,求線段MN的長度(用含m的代數式表示);

(3)在(2)的條件下,、交于A、B兩點,如果直線y=m與、的圖象形成的封閉曲線交于C、D兩點(C在左側),直線y=﹣m與、的圖象形成的封閉曲線交于E、F兩點(E在左側),求證:四邊形CEFD是平行四邊形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若x1、x2是一元二次方程x2+2x﹣3=0的二個根,則x1x2的值是( 。
A.2
B.-2
C.3
D.-3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點D,交AC的延長線于點E,連接ED,BE

(1)求證:△ABD∽△AEB;

(2)當時,求tanE;

(3)在(2)的條件下,作∠BAC的平分線,與BE交于點F,若AF=2,求⊙C的半徑

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了更好的保護美麗圖畫的邛海濕地,西昌市污水處理廠決定先購買A、B兩型污水處理設備共20臺,對邛海濕地周邊污水進行處理,每臺A型污水處理設備12萬元,每臺B型污水處理設備10萬元.已知1臺A型污水處理設備和2臺B型污水處理設備每周可以處理污水640噸,2臺A型污水處理設備和3臺B型污水處理設備每周可以處理污水1080噸

(1)求A、B兩型污水處理設備每周分別可以處理污水多少噸?

(2)經預算,市污水處理廠購買設備的資金不超過230萬元,每周處理污水的量不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列運算正確的是(

A. (﹣a23=﹣a5B. a3a5a15C. a5÷a2a3D. 3a22a21

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C(0,),頂點為D,對稱軸與x軸交于點H,過點H的直線l交拋物線于P,Q兩點,點Q在y軸的右側

(1)求a的值及點A,B的坐標;

(2)當直線l將四邊形ABCD分為面積比為3:7的兩部分時,求直線l的函數表達式;

(3)當點P位于第二象限時,設PQ的中點為M,點N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點N的坐標;若不能,請說明理由

查看答案和解析>>

同步練習冊答案