【題目】如圖,在 中,,F AB 延長線上一點,, 于點 D,交 BC 于點E

1)如圖1,求證:;

2)如圖2,若點 邊的中點,求 的度數(shù);

3)如圖3,在(2)的條件下,連接 ,作 ,交 于點G,若 ,.求 的面積

【答案】1)詳見解析;(267.5°;3.

【解析】

1)先證明三角形全等,利用全等性質即可解出此題

2)連接CF,得出等腰RtBCF,由此得出角度關系,根據(jù)D又是中點DFAC可以得出△AFC為等腰三角形,則DF就為角平分線,因此可以得出角度關系,聯(lián)合求解即可.

3)先證出△BCD≌△BFG,再證出△ABC≌△EBF,從而得出BEGBEF的關系即可.

1)證明:

FDAC

∴∠ADF=90°

∵∠ABC=90°

∴∠ADF=ABC=EBF

∵∠C+A=F+A=90°

∴∠C=F

在△ABC和△EBF

∴△ABC≌△EBF

AC=EF

2

連接CF

∵點DAC中點

AD=CD

FDAC

∴∠ADF=CDF=90°

在△ADF和△CDF

∴△ADF≌△CDF

∴∠AFD=CFD

BF=BCBCBF

∴△BCF是等腰直角三角形

∴∠BFC=BCF=AFD+CFD=45°

∴∠AFD=CFD=22.5°

∴∠A=90°-∠AFD=90°-22.5°=67.5°

3)∵BGBD

∴∠DBG=90°

∴∠DBC+EBG=FBG+EBG=90°

∴∠DBC=FBG

在△BCD和△BFG

∴△BCD≌△BFG

CD=FG

CD=AD,AC=EF

FG=EG

∵△ABC≌△EBF

AB=BE=1

BF=BC=BE+CE=1+

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(﹣,0),點B的坐標為(0,3).

(1)求過A,B兩點直線的函數(shù)表達式;

(2)過B點作直線BP與x軸交于點P,且使OP=2OA,求ABP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知等腰直角中,BD為斜邊上的中線,EDC上的一點,且GAGBDF.

1)求證:AF=BE.

2)如圖②,當點EDC的延長線上,其它條件不變,①的結論還能成立嗎?若不能,請說明理由;若能,請予以證明。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在求1+3+32+34+35+36+37+38的值時,張紅發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的3倍,于是她假設:S=1+3+32+33+34+35+36+37+38①,然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39①得:3S﹣S=39﹣1,即2S=39﹣1,S=

請閱讀張紅發(fā)現(xiàn)的規(guī)律,并幫張紅解決下列問題:

(1)愛動腦筋的張紅想:如果把“3”換成字母m(m0m1),應該能用類比的方法求出1+m+m2+m3+m4++m2018的值,對該式的值,你的猜想是______(用含m的代數(shù)式表示).

(2)證明你的猜想是正確的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,直線Ly=mx+5mx軸負半軸,y軸正半軸分別交于A、B兩點.

1)當OA=OB時,求點A坐標及直線L的解析式;

2)在(1)的條件下,如圖②所示,設QAB延長線上一點,作直線OQ,過A、B兩點分別作AMOQM,BNOQN,若AM=4,求BN的長;

3)當m取不同的值時,點By軸正半軸上運動,分別以OB、AB為邊,點B為直角頂點在第一、二象限內作等腰直角OBF和等腰直角ABE,連EFy軸于P點,如圖③.

問:當點By軸正半軸上運動時,試猜想PB的長是否為定值?若是,請求出其值;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAE,交BF于點C,BD平分∠ABC,交AE于點D,連接CD.

(1)求證:四邊形ABCD是菱形;

(2)若AB=5,AC=6,求AE,BF之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以邊為直徑的⊙經(jīng)過點,是⊙上一點,連結于點,且,.

(1)試判斷與⊙的位置關系,并說明理由;

(2)若點是弧的中點,已知,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=BC,將其繞點A逆時針旋轉15°得到RtAB′C′,B′C′ABE,若圖中陰影部分面積為,則B′E的長為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,平分于點,在上截取,過點于點.求證:四邊形是菱形;

如圖中,平分的外角的延長線于點,在的延長線上截取,過點的延長線于點.四邊形還是菱形嗎?如果是,請證明;如果不是,請說明理由.

查看答案和解析>>

同步練習冊答案