如圖,矩形紙片ABCD中,AB=5cm,BC=10cm,CD上有一點(diǎn)E,EC=2cm,AD上有一點(diǎn)P,PA=6cm,過(guò)點(diǎn)P作PF⊥AD交BC于點(diǎn)F,將紙片折疊,使P和E重合,折痕交PF于Q,則線(xiàn)段PQ的長(zhǎng)是cm.


  1. A.
    4
  2. B.
    4.5
  3. C.
    4數(shù)學(xué)公式
  4. D.
    4數(shù)學(xué)公式
D
分析:首先過(guò)點(diǎn)Q作QH⊥CD于H,連接EQ,由矩形ABCD與PF⊥AD,易證得四邊形PQHD是矩形,即可求得DH=PQ,DH=PD,又由折疊的性質(zhì),可得QE=PQ,然后設(shè)PQ=xcm,在Rt△EQH中,利用勾股定理即可得方程,解此方程即可求得答案.
解答:解:過(guò)點(diǎn)Q作QH⊥CD于H,連接EQ,
∴∠DHQ=90°,
∵四邊形ABCD是矩形,
∴∠D=90°,CD=AB=5cm,
∴DE=CD-EC=5-2=3(cm),
∵PF⊥AD,
∴∠FPD=90°,
∴四邊形PQHD是矩形,
∴QH=PD=AB-PA=10-6=4(cm),DH=PQ,
∵將紙片折疊,使P和E重合,折痕交PF于Q,
∴PQ=EQ,
設(shè)PQ=xcm,則QE=DH=xcm,
∴EH=DH-DE=x-3(cm),
在Rt△EQH中,QE2=QH2+EH2
即x2=42+(x-3)2,
解得:x=4
∴PQ=4cm.
故選D.
點(diǎn)評(píng):此題考查了折疊性質(zhì)、矩形的判定與性質(zhì)以及勾股定理等知識(shí).此題難度較大,注意掌握輔助線(xiàn)的作法,注意掌握折疊前后圖形的對(duì)應(yīng)關(guān)系,注意數(shù)形結(jié)合與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對(duì)角線(xiàn)AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線(xiàn)AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對(duì)角線(xiàn)AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對(duì)角線(xiàn)AC翻折交AD、BC于點(diǎn)F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說(shuō)明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線(xiàn)AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線(xiàn)AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第25章《圖形的變換》中考題集(30):25.3 軸對(duì)稱(chēng)變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線(xiàn)AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線(xiàn)AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽(yáng))如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線(xiàn)AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線(xiàn)AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

同步練習(xí)冊(cè)答案