如圖,在半徑為5的圓O中,AB,CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長為        ;

解析試題分析:作OM⊥AB于M,ON⊥CD于N,連接OP,OB,OD,由垂徑定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°,∴四邊形MONP是正方形,∴OP=
考點:勾股定理
點評:該題主要考查學生勾股定理的應用,結合了圓,以及弦的用法,需要學生靈活變動。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在半徑為R的圓中作一內接△ABC,使BC邊上的高AD=h(定值),這樣的三角形可作出無數(shù)個,但AB•AC為定值,其值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在半徑為R的圓內作一個內接正方形,然后作這個正方形的內切圓,又在這個內切圓中作內接正方形,依此作到第n個內切圓,它的半徑是( 。
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為6cm的圓中,弦AB長6
3
cm,試求弦AB所對的圓周角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為R的圓內作一個內接正方形,然后作這個正方形的內切圓,又在這個內切圓中作內接正方形,依此作到第n個內切圓,它的半徑是
2
2
nR
2
2
nR

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為1的圓中,圓心角為120°的扇形AOB的面積等于
π
3
π
3
(結果保留π).

查看答案和解析>>

同步練習冊答案