【題目】如圖,長(zhǎng)方形AOBC在直角坐標(biāo)系中,點(diǎn)A在y軸上,點(diǎn)B在x軸上,已知點(diǎn)C的坐標(biāo)是(8,4).

(1)求對(duì)角線AB所在直線的函數(shù)關(guān)系式;
(2)對(duì)角線AB的垂直平分線MN交x軸于點(diǎn)M,連接AM,求線段AM的長(zhǎng);
(3)若點(diǎn)P是直線AB上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAM的面積與長(zhǎng)方形OABC的面積相等時(shí),求點(diǎn)P的坐標(biāo).

【答案】
(1)

解:∵四邊形AOBC為長(zhǎng)方形,且點(diǎn)C的坐標(biāo)是(8,4),

∴AO=CB=4,OB=AC=8,

∴A點(diǎn)坐標(biāo)為(0,4),B點(diǎn)坐標(biāo)為(8,0).

設(shè)對(duì)角線AB所在直線的函數(shù)關(guān)系式為y=kx+b,

則有 ,解得: ,

∴對(duì)角線AB所在直線的函數(shù)關(guān)系式為y=﹣ x+4


(2)

解:∵四邊形AOBC為長(zhǎng)方形,且MN⊥AB,

∴∠AOB=∠MNB=90°,

又∵∠ABO=∠MBN,

∴△AOB∽△MNB,

∵AO=CB=4,OB=AC=8,

∴由勾股定理得:AB= =4 ,

∵M(jìn)N垂直平分AB,

∴BN=AN= AB=2

= = ,即MB=5.

OM=OB﹣MB=8﹣5=3,

由勾股定理可得:

AM= =5


(3)

解:∵OM=3,

∴點(diǎn)M坐標(biāo)為(3,0).

又∵點(diǎn)A坐標(biāo)為(0,4),

∴直線AM的解析式為y=﹣ x+4.

∵點(diǎn)P在直線AB:y=﹣ x+4上,

∴設(shè)P點(diǎn)坐標(biāo)為(m,﹣ m+4),

點(diǎn)P到直線AM: x+y﹣4=0的距離h= =

△PAM的面積SPAM= AMh= |m|=SOABC=AOOB=32,

解得m=±

故點(diǎn)P的坐標(biāo)為( ,﹣ )或(﹣ ,


【解析】(1)由坐標(biāo)系中點(diǎn)的意義結(jié)合圖形可得出A、B點(diǎn)的坐標(biāo),設(shè)出對(duì)角線AB所在直線的函數(shù)關(guān)系式,由待定系數(shù)法即可求得結(jié)論;(2)由相似三角形的性質(zhì)找到BM的長(zhǎng)度,再結(jié)合OM=OB﹣BM得出OM的長(zhǎng),根據(jù)勾股定理即可得出線段AM的長(zhǎng);(3)先求出直線AM的解析式,設(shè)出P點(diǎn)坐標(biāo),由點(diǎn)到直線的距離求出AM邊上的高h(yuǎn),再結(jié)合三角形面積公式與長(zhǎng)方形面積公式即可求出P點(diǎn)坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一次函數(shù)的圖象和性質(zhì)的相關(guān)知識(shí),掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)過點(diǎn)(﹣1,0)和點(diǎn)(0﹣3),且頂點(diǎn)在第四象限,設(shè)P=a+b+c,則P的取值范圍是( 。

A. ﹣3P﹣1 B. ﹣6P0 C. ﹣3P0 D. ﹣6P﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家為支持大學(xué)生創(chuàng)業(yè),提供小額無息貸款,學(xué)生王芳享受政策無息貸款36000元用來代理品牌服裝的銷售.已知該品牌服裝進(jìn)價(jià)每件40元,日銷售y(件)與銷售價(jià)x(元/件)之間的關(guān)系如圖所示(實(shí)線),每天付員工的工資每人每天82元,每天應(yīng)支付其它費(fèi)用106元.

(1)求日銷售y(件)與銷售價(jià)x (元/件)之間的函數(shù)關(guān)系式;

(2)若暫不考慮還貸,當(dāng)某天的銷售價(jià)為48元/件時(shí),收支恰好平衡(收入=支出),求該店員工人數(shù);

(3)若該店只有2名員工,則該店至少需要多少天才能還清貸款,此時(shí),每件服裝的價(jià)格應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a=5,│b│=8,且滿足ab<0,則ab的值為( )

A. 3 B. -3 C. -13 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①棱柱的上、下底面的形狀相同;②相等的角是對(duì)頂角;③若AB=BC,則點(diǎn)B為線段AC的中點(diǎn);④直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

其中正確說法的個(gè)數(shù)有 ( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)Dy軸上,以D為圓心,作⊙Dx軸于點(diǎn)EF,交y軸于點(diǎn)B、G,點(diǎn)A上,連接ABx軸于點(diǎn)H,連接 AF并延長(zhǎng)到點(diǎn)C,使∠FBC=A

(1)判斷直線BC與⊙D的位置關(guān)系,并說明理由;

(2)求證:BE2=BH·AB;

(3) 若點(diǎn)E坐標(biāo)為(-4,0),點(diǎn)B的坐標(biāo)為(0,-2),AB=8,求FA兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系中,已知點(diǎn)A0,2)、點(diǎn)B-2,0),過點(diǎn)B和線段OA的中點(diǎn)C作直線BC,以線段BC為邊向上作正方形BCDE.

1)填空:點(diǎn)D的坐標(biāo)為_________,點(diǎn)E的坐標(biāo)為_______________.

2)若拋物線經(jīng)過A、D、E三點(diǎn),求該拋物線的解析式.

3)若正方形和拋物線均以每秒個(gè)單位長(zhǎng)度的速度沿射線BC同時(shí)向上平移,直至正方形的頂點(diǎn)E落在軸上時(shí),正方形和拋物線均停止運(yùn)動(dòng).

①在運(yùn)動(dòng)過程中,設(shè)正方形落在y軸右側(cè)部分的面積為,求關(guān)于平移時(shí)間(秒)的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍.

②運(yùn)動(dòng)停止時(shí),求拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角三角形ABC中,直線L為BC的中垂線,射線BM為∠ABC的角平分線,L與M相交于P點(diǎn),若∠A=60°,∠ACP=24°,則∠ABP的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|1﹣3|=

查看答案和解析>>

同步練習(xí)冊(cè)答案