如圖1,若△ABC和△ADE為等邊三角形,M,N分別為EB,CD的中點,易證:CD=BE,△AMN是等邊三角形:
(1)當(dāng)把△ADE繞點A旋轉(zhuǎn)到圖2的位置時,CD=BE嗎?若相等請證明,若不等于請說明理由;
(2)當(dāng)把△ADE繞點A旋轉(zhuǎn)到圖3的位置時,△AMN還是等邊三角形嗎?若是請證明,若不是,請說明理由(可用第一問結(jié)論).
解:(1)CD=BE.理由如下:
∵△ABC和△ADE為等邊三角形
∴AB=AC,AE=AD,∠BAC=∠EAD=60o
∵∠BAE =∠BAC-∠EAC =60o-∠EAC,
∠DAC =∠DAE-∠EAC =60o-∠EAC,
∴∠BAE=∠DAC, ∴△ABE ≌ △ACD
∴CD=BE
(2)△AMN是等邊三角形.理由如下:
∵△ABE ≌ △ACD, ∴∠ABE=∠ACD.
∵M、N分別是BE、CD的中點,∴BM=CN
∵AB=AC,∠ABE=∠ACD, ∴△ABM ≌ △ACN.∴AM=AN,∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°
∴△AMN是等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com