如圖在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)在x軸上且B在A點(diǎn)右側(cè),過(guò)點(diǎn)A和B做x軸垂線,分別交二次函數(shù)y=x2的圖象與C、D兩點(diǎn),直線OC交BD于M.
(1)若A點(diǎn)坐標(biāo)為(1,0),B點(diǎn)坐標(biāo)為(2,0),求證:S△CMD:S四邊形ABMC=2:3
(2)將A、B兩點(diǎn)坐標(biāo)改為A(t,0),B(2t,0)(t>0),其他條件不變,(1)中結(jié)論是否成立?請(qǐng)驗(yàn)證.
附加題:將y=x2改為y=ax2(a>0),其他條件不變,(1)中結(jié)論是否成立?請(qǐng)驗(yàn)證.

【答案】分析:(1)可先根據(jù)AB=OA得出B點(diǎn)的坐標(biāo),然后根據(jù)拋物線的解析式和A,B的坐標(biāo)得出C,D兩點(diǎn)的坐標(biāo),再依據(jù)C點(diǎn)的坐標(biāo)求出直線OC的解析式.進(jìn)而可求出M點(diǎn)的坐標(biāo),然后根據(jù)C、D兩點(diǎn)的坐標(biāo)求出直線CD的解析式進(jìn)而求出D點(diǎn)的坐標(biāo),然后可根據(jù)這些點(diǎn)的坐標(biāo)進(jìn)行求解即可;
(2)及附加題的解法同(1)完全一樣.
解答:(1)∵A點(diǎn)坐標(biāo)為A(1,0)B(2,0)
∴C點(diǎn)坐標(biāo)為(1,1),D(2,4)
設(shè)直線OC解析式為y=kx過(guò)點(diǎn)C(1,1)
∴k=1y=x
∴M坐標(biāo)為(2,2)
∴S△CMD=1,S
∴S△CMD:SABMC=2:3;

(2)結(jié)論仍然成立,∵A點(diǎn)坐標(biāo)A(1,0),B為(2,0)
∴C(1,a),D(2,4a)
設(shè)直線OC解析式為y=kx過(guò)點(diǎn)C(1,a)
∴k=a∴y=ax
點(diǎn)M在直線OC上,當(dāng)x=2y時(shí),y=2a
∴M(2,2a)
S△OMD:SABNC=[]:[]=2:3
結(jié)論成立

附加題:
∵A(t,0)B(2t,0)
∴C坐標(biāo)為C(t,at2+bt),D(2t,4at2+2bt)
直線OC解析式為y=(at+b)x
M在直線OC上,∴M(2t,2at2+2bt)
∴S△OMD:SABMC=2:3
點(diǎn)評(píng):本題主要考查了二次函數(shù)的綜合及圖形面積的求法、函數(shù)圖象的交點(diǎn)等知識(shí)點(diǎn),本題是一題多變題,在中考中經(jīng)常出現(xiàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖在平面直角坐標(biāo)系中,△AOB的頂點(diǎn)分別為A(2,0),O(0,0),B(0,4).
①△AOC與△AOB關(guān)于x軸成軸對(duì)稱,則C點(diǎn)坐標(biāo)為
(0,-4)
;
②將△AOB繞AB的中點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得△EGF,則點(diǎn)A的對(duì)應(yīng)點(diǎn)E的坐標(biāo)為
(3,3)

③在圖中畫出△AOC和△EGF,△AOB與△EGF重疊的面積為
1
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(2,0),以點(diǎn)A為圓心,2為半徑的圓與x軸交于O,B兩點(diǎn),C為⊙A上一點(diǎn),P是x軸上的一點(diǎn),連接CP,將⊙A向上平移1個(gè)單位長(zhǎng)度,⊙A與x軸交于M、N,與y軸相切于點(diǎn)G,且CP與⊙A相切于點(diǎn)C,∠CAP=60°.請(qǐng)你求出平移后MN和PO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示點(diǎn)B在拋物線y=ax2+ax-2上.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°到達(dá)△AB′C′的位置,請(qǐng)寫出點(diǎn)B′坐標(biāo)
(1,-1)
(1,-1)
,點(diǎn)C′坐標(biāo)
(2,1)
(2,1)
;判斷點(diǎn)B′
,C′
(填“在”或“不”)在(2)中的拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,M為x軸上一點(diǎn),⊙M交x軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),P為
BC
上的一個(gè)動(dòng)點(diǎn),CQ平分∠PCD交AP于Q,A(-1,0),M(1,0).
(1)求C點(diǎn)坐標(biāo);
(2)當(dāng)點(diǎn)P在
BC
上運(yùn)動(dòng)時(shí),線段AQ的長(zhǎng)是否改變?若不變,請(qǐng)求出其長(zhǎng)度;若改變,請(qǐng)說(shuō)明理由.(提示:連接AC).
(3)當(dāng)點(diǎn)P在
BC
上運(yùn)動(dòng)時(shí),是否存在這樣的點(diǎn)P,使CQ所在直線經(jīng)過(guò)點(diǎn)M?若存在請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請(qǐng)問(wèn)在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案