【題目】某醫(yī)藥廠兩年前生產(chǎn)1t某種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1t該種藥品的成本是3000元.設(shè)該種藥品生產(chǎn)成本的年平均下降率為x,則下列所列方程正確的是( )
A. 5000×2(1﹣x)=3000 B. 5000×(1﹣x)2=3000
C. 5000×(1﹣2x)=3000 D. 5000×(1﹣x2)=3000
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,是的直徑,是上一點,和過點的切線互相垂直,垂足為點.
如圖,求證:平分;
如圖,直線與的延長線交于點,的平分線交于點,交于點,求證:;
在的條件下,如圖,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結(jié)論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長多大時,總費(fèi)用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)點P的坐標(biāo)為(x,y),當(dāng)x<0時,點P的變換點P′的坐標(biāo)為(﹣x,y);當(dāng)x≥0時,點P的變換點P′的坐標(biāo)為(﹣y,x).
(1)若點A(2,1)的變換點A′在反比例函數(shù)y=的圖象上,則k= ;
(2)若點B(2,4)和它的變換點B'在直線y=ax+b上,則這條直線對應(yīng)的函數(shù)關(guān)系式為 ,∠BOB′的大小是 度.
(3)點P在拋物線y=x2﹣2x﹣3的圖象上,以線段PP′為對角線作正方形PMP'N,設(shè)點P的橫坐標(biāo)為m,當(dāng)正方形PMP′N的對角線垂直于x軸時,求m的取值范圍.
(4)拋物線y=(x﹣2)2+n與x軸交于點C,D(點C在點D的左側(cè)),頂點為E,點P在該拋物線上.若點P的變換點P′在拋物線的對稱軸上,且四邊形ECP′D是菱形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,∠ACB=90°,AC=BC=4,D是AB的中點,P是平面上的一點,且DP=1,連接BP,CP
(1)如圖,當(dāng)點P在線段BD上時,求CP的長;
(2)當(dāng)△BPC是等腰三角形時,求CP的長;
(3)將點B繞點P順時針旋轉(zhuǎn)90°得到點B′,連接AB′,求AB′的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是數(shù)學(xué)中最常見的定理之一,熟練的掌握勾股數(shù),對迅速判斷、解答題目有很大幫助,觀察下列幾組勾股數(shù):
1 | |||
2 | |||
3 | |||
4 | |||
… | … | … | … |
(1)你能找出它們的規(guī)律嗎?(填在上面的橫線上)
(2)你能發(fā)現(xiàn),,之間的關(guān)系嗎?
(3)對于偶數(shù),這個關(guān)系 (填“成立”或“不成立”)嗎?
(4)你能用以上結(jié)論解決下題嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABD中,AB=AD,點M 為邊AD上一動點,點E在DA的延長線上,且AM=AE,以BE為直角邊,向外作等腰Rt△BEG,MG交AB于N,連NE、DN.
(1)求證:∠BEN=∠BGN.
(2)求的值.
(3)當(dāng)M在AD上運(yùn)動時,探究四邊形BDNG的形狀,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,E,F(xiàn)分別在邊AC、BC上,滿足AE=CF,連接BE,AF交于點P.
(1)求證:△ABE≌△CAF;
(2)求∠APB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com