【題目】某醫(yī)藥廠兩年前生產(chǎn)1t某種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1t該種藥品的成本是3000元.設(shè)該種藥品生產(chǎn)成本的年平均下降率為x,則下列所列方程正確的是(  )

A. 5000×2(1﹣x)=3000 B. 5000×(1﹣x)2=3000

C. 5000×(1﹣2x)=3000 D. 5000×(1﹣x2)=3000

【答案】B

【解析】

增長率問題是近幾年中考的熱點題型,只有掌握增長率問題的本質(zhì)內(nèi)涵,才能在中考時以不變應(yīng)萬變。增長率實質(zhì)是;增加量占起始量的百分比,增加量是終極量減去起始量。若這種藥品的年平均下降率為x,根據(jù)兩年前生產(chǎn)1噸某藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1噸藥品的成本是3600元可列方程.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,的直徑,上一點,和過點的切線互相垂直,垂足為點

如圖,求證:平分;

如圖,直線的延長線交于點,的平分線交于點,于點,求證:;

的條件下,如圖,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結(jié)論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)

(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?

(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長多大時,總費(fèi)用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)點P的坐標(biāo)為(x,y),當(dāng)x<0時,點P的變換點P′的坐標(biāo)為(﹣x,y);當(dāng)x≥0時,點P的變換點P′的坐標(biāo)為(﹣y,x).

(1)若點A(2,1)的變換點A′在反比例函數(shù)y=的圖象上,則k=   ;

(2)若點B(2,4)和它的變換點B'在直線y=ax+b上,則這條直線對應(yīng)的函數(shù)關(guān)系式為   ,BOB′的大小是   度.

(3)點P在拋物線y=x2﹣2x﹣3的圖象上,以線段PP′為對角線作正方形PMP'N,設(shè)點P的橫坐標(biāo)為m,當(dāng)正方形PMP′N的對角線垂直于x軸時,求m的取值范圍.

(4)拋物線y=(x﹣2)2+nx軸交于點C,D(點C在點D的左側(cè)),頂點為E,點P在該拋物線上.若點P的變換點P′在拋物線的對稱軸上,且四邊形ECP′D是菱形,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,∠ACB=90°,AC=BC=4,DAB的中點,P是平面上的一點,且DP=1,連接BP,CP

(1)如圖,當(dāng)點P在線段BD上時,求CP的長;

(2)當(dāng)△BPC是等腰三角形時,求CP的長;

(3)將點B繞點P順時針旋轉(zhuǎn)90°得到點B′,連接AB′,求AB′的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是數(shù)學(xué)中最常見的定理之一,熟練的掌握勾股數(shù),對迅速判斷、解答題目有很大幫助,觀察下列幾組勾股數(shù):

1

2

3

4

1)你能找出它們的規(guī)律嗎?(填在上面的橫線上)

2)你能發(fā)現(xiàn),之間的關(guān)系嗎?

3)對于偶數(shù),這個關(guān)系 (填“成立”或“不成立”)嗎?

4)你能用以上結(jié)論解決下題嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABD中,ABAD,點M 為邊AD上一動點,點EDA的延長線上,且AMAE,以BE為直角邊,向外作等腰Rt△BEGMGABN,連NEDN

(1)求證:∠BEN=∠BGN

(2)求的值.

(3)當(dāng)MAD上運(yùn)動時,探究四邊形BDNG的形狀,并證明之.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,E,F(xiàn)分別在邊AC、BC上,滿足AE=CF,連接BE,AF交于點P.

(1)求證:ABE≌△CAF;

(2)求∠APB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案