如圖,在△ABC中,以AC邊為直徑的⊙O交BC邊于點(diǎn)D,在劣弧 上取一點(diǎn)E,并使∠EBC=∠DEC,延長(zhǎng)BE依次交AC于G,交⊙O于H
1.求證:AC⊥BH
2.若∠ABC=45°,⊙O的直徑等于10,BD=8,求CE的長(zhǎng)
1.連接AD,………………………………………1分
∵∠DAC=∠DEC,∠EBC=∠DEC,
∴∠DAC=∠EBC,…………………………………2分
又∵AC是⊙O的直徑,∴∠ADC=90°,………3分
∴∠EBC+∠BCG=∠DAC+∠DCA=90°,
∴∠BGC=90°,∴AC⊥BH.……………………5分
2.∵∠BDA=180°-∠ADC=90°,∠ABC=45°,
∴∠BAD=45°,∴AD=BD=8,……………………6分
又∵AC=10,∴在Rt△ADC中由勾股定理,得:
,
∴BC=BD+DC=8+6=14,……………………………7分
又∵∠BGC=∠ADC=90°,∠BCG=∠ACD,
∴△BCG∽△ACD,
∴,∴,………8分
連接AE,∵AC是⊙O的直徑,∴∠AEC=90°,
∴Rt△AEC∽R(shí)t△EGC,∴,∴,
∴.……………………………………10分
【解析】(1)利用園的直徑對(duì)應(yīng)的園周角為直角,再根據(jù)角的等量代換得出∠BGC=90°,從而得出AC⊥BH;
(2)先用勾股定理求出BC的長(zhǎng),然后利用△BCG∽△ACD求出CG的長(zhǎng),再利用Rt△AEC∽R(shí)t△EGC求出CE的長(zhǎng)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com