【題目】如圖,邊長為的正方形繞點逆時針旋轉(zhuǎn)度后得到正方形,邊與交于點,則四邊形的周長是_______________.
【答案】
【解析】
由題意可知當(dāng)AB繞點A逆時針旋轉(zhuǎn)45度后,剛回落在正方形對角線AC上,據(jù)此求出 B′C,再根據(jù)等腰直角三角形的性質(zhì),勾股定理可求B′O和OD,從而可求四邊形AB′OD的周長.
解:連接B′C,
∵旋轉(zhuǎn)角∠BAB′=45°,∠BAC=45°,
∴B′在對角線AC上,
∵AB=BC= AB′=1,用勾股定理得AC==,
∴B′C= AC-AB′=-1,
∵旋轉(zhuǎn)角∠BAB′=45°,AC為對角線,∠AB′O=90°,
∴∠CB′O=90°,∠B′CO=45°,即有△OB′C為等腰直角三角形,
在等腰Rt△OB′C中,OB′=B′C=-1,
在直角三角形OB′C中,由勾股定理得OC= (-1)=2-,
∴OD=1-OC=1-(2-)=-1,
∴四邊形AB′OD的周長是:2AD+OB′+OD=2+-1+-1=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一長方形紙片放在平面直角坐標(biāo)系中,,,,動點從點出發(fā)以每秒1個單位長度的速度沿向終點運動,運動秒時,動點從點出發(fā)以相同的速度沿向終點運動,當(dāng)點、其中一點到達(dá)終點時,另一點也停止運動.
設(shè)點的運動時間為:(秒)
(1)_________,___________(用含的代數(shù)式表示)
(2)當(dāng)時,將沿翻折,點恰好落在邊上的點處,求點的坐標(biāo)及直線的解析式;
(3)在(2)的條件下,點是射線上的任意一點,過點作直線的平行線,與軸交于點,設(shè)直線的解析式為,當(dāng)點與點不重合時,設(shè)的面積為,求與之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自動化車間計劃生產(chǎn)480個零件,當(dāng)生產(chǎn)任務(wù)完成一半時,停止生產(chǎn)進(jìn)行自動化程序軟件升級,用時20分鐘,恢復(fù)生產(chǎn)后工作效率比原來提高了,結(jié)果完成任務(wù)時比原計劃提前了40分鐘,求軟件升級后每小時生產(chǎn)多少個零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.
(1)當(dāng)y1﹣y2=4時,求m的值;
(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(biāo)(不需要寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點,動點P(x,0)在x正半軸上運動,當(dāng)線段AP與線段BP之差達(dá)到最大時,點P的坐標(biāo)是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)與的圖象如圖所示,下列說法:①;②函數(shù)不經(jīng)過第一象限;③不等式的解集是;④.其中正確的個數(shù)有( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用“同角的余角相等”可以幫助我們得到相等的角,這個規(guī)律在全等三角形的判定中有著廣泛的運用.
(1)如圖①,,,三點共線,于點,于點,,且.若,求的長.
(2)如圖②,在平面直角坐標(biāo)系中,為等腰直角三角形,直角頂點的坐標(biāo)為,點的坐標(biāo)為.求直線與軸的交點坐標(biāo).
(3)如圖③,,平分,若點坐標(biāo)為,點坐標(biāo)為.則 .(只需寫出結(jié)果,用含,的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,點是的中點,,,平分,下列結(jié)論:
① ② ③ ④
四個結(jié)論中成立的是( )
A.①②④B.①②③C.②③④D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com