【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,東營市某中學利用周末時間開展了“助老助殘、社區(qū)服務、生態(tài)環(huán)保、網絡文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數據后,繪制以下不完整的統(tǒng)計圖,請你根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)求該班的人數;
(2)請把折線統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中,網絡文明部分對應的圓心角的度數;
(4)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.
【答案】(1)48(2)圖形見解析(3)45°(4)
【解析】
試題分析:(1)根據參加生態(tài)環(huán)保的人數以及百分比,即可解決問題;
(2)社區(qū)服務的人數,畫出折線圖即可;
(3)根據圓心角=360°×百分比,計算即可;
(4)用列表法即可解決問題;
試題解析:(1)該班全部人數:12÷25%=48人.
(2)48×50%=24,折線統(tǒng)計如圖所示:
(3)×360°=45°.
(4)分別用“1,2,3,4”代表“助老助殘、社區(qū)服務、生態(tài)環(huán)保、網絡文明”四個服務活動,列表如下:
則所有可能有16種,其中他們參加同一活動有4種,
所以他們參加同一服務活動的概率P==.
科目:初中數學 來源: 題型:
【題目】按要求完成下列推理證明.
如圖,已知點D為BC延長線上一點,CE∥AB.
求證:∠A+∠B+∠ACB=180°
證明:∵CE∥AB,
∴∠1= ,( )
∠2= ,( )
又∠1+∠2+∠ACB=180°(平角的定義),
∴∠A+∠B+∠ACB=180°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x-6)2+h.已知球網與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m。
(1)當h=2.6時,求y與x的關系式(不要求寫出自變量x的取值范圍)
(2)當h=2.6時,球能否越過球網?球會不會出界?請說明理由;
(3)若球一定能越過球網,又不出邊界,求h的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(–4,n),B(2,–4)是一次函數y=kx+b的圖象和反比例函數的圖象的兩個交點.
(1)求反比例函數和一次函數的解析式;
(2)求直線AB與x軸的交點C的坐標及△AOB的面積;
(3)求不等式的解集(請直接寫出答案).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一副三角板的三個內角分別是90°,45°,45°和90°,60°,30°,按如圖所示疊放在一起(點A,D,B在同一直線上),若固定△ABC,將△BDE繞著公共頂點B順時針旋轉α度(0<α<180),當邊DE與△ABC的某一邊平行時,相應的旋轉角α的值為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=k1x(x≥0)與雙曲線y= (x>0)相交于點P(2,4).已知點A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點O移動到點P,得到△A′PB′.過點A′作A′C∥y軸交雙曲線于點C,連接CP.
(1)求k1與k2的值;
(2)求直線PC的解析式;
(3)直接寫出線段AB掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=90°,將三角尺的直角頂點P落在∠AOB的平分線OC的任意一點上,使三角尺的兩條直角邊與∠AOB的兩邊分別相交于點E、F。證明:PE=PF。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如下圖所示,且關于x的一元二次方程ax2+bx+c-m=0沒有實數根,有下列結論:①b2-4ac>0;②abc<0;③m>2.其中,正確結論的個數是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com